메뉴 건너뛰기




Volumn 34, Issue 12, 2010, Pages 4050-4057

A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods

Author keywords

Chaotic indicators; Correlation dimension; Kizilirmak River; Lyapunov exponent; River flow

Indexed keywords

AVERAGE MUTUAL INFORMATION; CHAOTIC INDICATORS; CHAOTIC NATURE; CORRELATION DIMENSIONS; DELAY TIME; EMBEDDING DIMENSIONS; EMBEDDING PARAMETERS; FALSE NEAREST NEIGHBOR; LARGEST LYAPUNOV EXPONENT; LOW CORRELATION; LYAPUNOV EXPONENT; POSITIVE VALUE; RIVER FLOW; RIVER FLOW TIME SERIES;

EID: 77954029070     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2010.03.036     Document Type: Article
Times cited : (57)

References (28)
  • 1
    • 0026269383 scopus 로고
    • Representing serial correlation of meteorological events and forecasts in dynamic decision-analytic models
    • Wilks D.S. Representing serial correlation of meteorological events and forecasts in dynamic decision-analytic models. Mon. Weather Rev. 1991, 119:1640-1662.
    • (1991) Mon. Weather Rev. , vol.119 , pp. 1640-1662
    • Wilks, D.S.1
  • 2
    • 0028199319 scopus 로고
    • Analysis and prediction of chaos in rainfall and stream flow time series
    • Jayawardena A.W., Lai F. Analysis and prediction of chaos in rainfall and stream flow time series. J. Hydrol. 1994, 153:23-52.
    • (1994) J. Hydrol. , vol.153 , pp. 23-52
    • Jayawardena, A.W.1    Lai, F.2
  • 3
    • 0030619033 scopus 로고    scopus 로고
    • Nonlinear analysis of river flow time sequences
    • Porporato A., Ridolfi L. Nonlinear analysis of river flow time sequences. Water Resour. Res. 1997, 33(6):1353-1367.
    • (1997) Water Resour. Res. , vol.33 , Issue.6 , pp. 1353-1367
    • Porporato, A.1    Ridolfi, L.2
  • 5
    • 0000943616 scopus 로고    scopus 로고
    • Deterministic chaos in runoff series
    • Stehlik J. Deterministic chaos in runoff series. J. Hydrol. Hydromech. 1999, 47(4):271-287.
    • (1999) J. Hydrol. Hydromech. , vol.47 , Issue.4 , pp. 271-287
    • Stehlik, J.1
  • 6
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., Fernando T.M.G.H. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 2002, 265(1-4):225-245.
    • (2002) J. Hydrol. , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.G.H.3
  • 7
    • 0036475142 scopus 로고    scopus 로고
    • Characterization and prediction of runoff dynamics: a nonlinear dynamical view
    • Islam M.N., Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv. Water Resour. 2002, 25:179-190.
    • (2002) Adv. Water Resour. , vol.25 , pp. 179-190
    • Islam, M.N.1    Sivakumar, B.2
  • 8
    • 0035007143 scopus 로고    scopus 로고
    • Chaotic forecasting of discharge time series: a case study
    • Lisi F., Villi V. Chaotic forecasting of discharge time series: a case study. J. Am. Water Resour. Assoc. 2001, 37(2):271-279.
    • (2001) J. Am. Water Resour. Assoc. , vol.37 , Issue.2 , pp. 271-279
    • Lisi, F.1    Villi, V.2
  • 9
    • 0344906115 scopus 로고    scopus 로고
    • Phase-space analysis of daily streamflow: characterization and prediction
    • Liu Q., Islam S., Rodriguez-lturbe I., Le Y. Phase-space analysis of daily streamflow: characterization and prediction. Adv. Water Resour. 1998, 21:463-475.
    • (1998) Adv. Water Resour. , vol.21 , pp. 463-475
    • Liu, Q.1    Islam, S.2    Rodriguez-lturbe, I.3    Le, Y.4
  • 10
    • 0037196231 scopus 로고    scopus 로고
    • Noise reduction in chaotic hydrologic time series: facts and doubts
    • Elshorbagy A., Simonovic S.P., Panu U.S. Noise reduction in chaotic hydrologic time series: facts and doubts. J. Hydrol. 2002, 256:147-165.
    • (2002) J. Hydrol. , vol.256 , pp. 147-165
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 11
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy A., Simonovic S.P., Panu U.S. Estimation of missing streamflow data using principles of chaos theory. J. Hydrol. 2002, 255:123-133.
    • (2002) J. Hydrol. , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 12
    • 35348991143 scopus 로고    scopus 로고
    • A new local linear prediction model for chaotic time series
    • Qingfang M., Yuhua P. A new local linear prediction model for chaotic time series. Phys. Lett. A 2007, 370:465-4706.
    • (2007) Phys. Lett. A , vol.370 , pp. 465-4706
    • Qingfang, M.1    Yuhua, P.2
  • 13
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi O., Cigizoglu H.K. Comparison of different ANN techniques in river flow prediction. Civil Eng. Environ. Syst. 2007, 24(3):211-231.
    • (2007) Civil Eng. Environ. Syst. , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 14
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. ASCE J. Hydrol. Eng. 2007, 12(5):532-539.
    • (2007) ASCE J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 15
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi O. River flow forecasting and estimation using different artificial neural network techniques. Hydrol. Res. 2008, 39(1):27-40.
    • (2008) Hydrol. Res. , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 16
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando A.K., Jayawardena A.W. Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol. Eng. ASCE 1998, 3(3):203-209.
    • (1998) J. Hydrol. Eng. ASCE , vol.3 , Issue.3 , pp. 203-209
    • Fernando, A.K.1    Jayawardena, A.W.2
  • 17
    • 0024092569 scopus 로고
    • Short-term forecasting of snowmelt runoff using ARMAX models
    • Haltiner J.P., Salas J.D. Short-term forecasting of snowmelt runoff using ARMAX models. Water Resour. Bull. 1988, 24(5):1083-1089.
    • (1988) Water Resour. Bull. , vol.24 , Issue.5 , pp. 1083-1089
    • Haltiner, J.P.1    Salas, J.D.2
  • 18
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., Ranka S. Forecasting the behavior of multivariate time series using neural networks. Neural Networks 1992, 5:961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 19
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16:325-1330.
    • (2002) Hydrol. Process. , vol.16 , pp. 325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 20
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Springer-Verlag, New York
    • Takens F. Detecting strange attractors in turbulence. Lectures Notes in Mathematics 1981, vol. 898:366-381. Springer-Verlag, New York.
    • (1981) Lectures Notes in Mathematics , vol.898 , pp. 366-381
    • Takens, F.1
  • 21
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33:1134-1140.
    • (1986) Phys. Rev. A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 23
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel M., Brown R., Abarbanel H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45:3403-3411.
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.1    Brown, R.2    Abarbanel, H.D.I.3
  • 24
    • 0001413326 scopus 로고
    • Spurious dimension from correlation algorithms applied to limited time-series data
    • Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 1986, 34:2427-2432.
    • (1986) Phys. Rev. A , vol.34 , pp. 2427-2432
    • Theiler, J.1
  • 25
    • 43949166788 scopus 로고
    • A practical method for the calculating largest Lyapunov exponents from small datasets
    • Rosenstein M.T., Collins J.J., Deluca C.J. A practical method for the calculating largest Lyapunov exponents from small datasets. Physica D 1993, 65:117-134.
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    Deluca, C.J.3
  • 26
    • 0001870258 scopus 로고
    • A robust method to estimate the maximal Lyapunov exponent of a time series
    • Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 1994, 185:77-87.
    • (1994) Phys. Lett. A , vol.185 , pp. 77-87
    • Kantz, H.1
  • 28
    • 0000810560 scopus 로고    scopus 로고
    • Practical implementation of nonlinear time series methods: the TISEAN package
    • Hegger R., Kantz H., Schreiber T. Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 1999, 9:413-435.
    • (1999) Chaos , vol.9 , pp. 413-435
    • Hegger, R.1    Kantz, H.2    Schreiber, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.