메뉴 건너뛰기




Volumn 37, Issue 2, 2010, Pages 338-354

A Spline-Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval-Censored Data

Author keywords

Consistent variance estimation; Convergence rate; Efficient estimation; Empirical processes; Monotonicity constraints; Sieve semiparametric model

Indexed keywords


EID: 77954004758     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2009.00680.x     Document Type: Article
Times cited : (129)

References (47)
  • 1
    • 0021714634 scopus 로고
    • The effect of adjuvant chemotherapy on the cosmetic results after primary radiation treatment for early breast cancer: a preliminary analysis
    • Beadle G, Harris J, Comes S, Henderson C, Silver B, Hellman S. The effect of adjuvant chemotherapy on the cosmetic results after primary radiation treatment for early breast cancer: a preliminary analysis. Int. J. Radiat. Oncol., Biol. and Phys. 1984, 10:2131-2137.
    • (1984) Int. J. Radiat. Oncol., Biol. and Phys. , vol.10 , pp. 2131-2137
    • Beadle, G.1    Harris, J.2    Comes, S.3    Henderson, C.4    Silver, B.5    Hellman, S.6
  • 2
    • 9244223025 scopus 로고    scopus 로고
    • Analysis of clustered and interval censored data from a community-based study in asthma
    • Bellamy S, Li Y, Ryan L, Lipsitz S, Canner M, Wright R. Analysis of clustered and interval censored data from a community-based study in asthma. Stat. Med. 2004, 23:3607-3621.
    • (2004) Stat. Med. , vol.23 , pp. 3607-3621
    • Bellamy, S.1    Li, Y.2    Ryan, L.3    Lipsitz, S.4    Canner, M.5    Wright, R.6
  • 3
    • 0008555752 scopus 로고    scopus 로고
    • Computationally simple accelerated failure time regression for interval censored data
    • Betensky R, Rabinowitz D, Tsiatis A. Computationally simple accelerated failure time regression for interval censored data. Biometrika 2001, 88:703-711.
    • (2001) Biometrika , vol.88 , pp. 703-711
    • Betensky, R.1    Rabinowitz, D.2    Tsiatis, A.3
  • 6
    • 0037203142 scopus 로고    scopus 로고
    • Modelling tooth emergence data based on multivariate interval-censored data
    • Bogaerts K, Leroy R, Lesaffre E, Declerck D. Modelling tooth emergence data based on multivariate interval-censored data. Stat. Med. 2002, 21:3775-3787.
    • (2002) Stat. Med. , vol.21 , pp. 3775-3787
    • Bogaerts, K.1    Leroy, R.2    Lesaffre, E.3    Declerck, D.4
  • 7
    • 0042334736 scopus 로고    scopus 로고
    • Hazard regression for interval-censored data with penalized spline
    • Cai T, Betensky R. Hazard regression for interval-censored data with penalized spline. Biometrics 2003, 59:570-579.
    • (2003) Biometrics , vol.59 , pp. 570-579
    • Cai, T.1    Betensky, R.2
  • 8
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox D R. Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B 1972, 34:187-220.
    • (1972) J. Roy. Statist. Soc. Ser. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 9
    • 0023034110 scopus 로고
    • A proportional hazards model for interval-censored failure time data
    • Finkelstein D. A proportional hazards model for interval-censored failure time data. Biometrics 1986, 42:845-854.
    • (1986) Biometrics , vol.42 , pp. 845-854
    • Finkelstein, D.1
  • 10
    • 0022305939 scopus 로고
    • A semiparametric model for regression analysis of interval-censored failure time data
    • Finkelstein D, Wolf R. A semiparametric model for regression analysis of interval-censored failure time data. Biometrics 1985, 41:933-945.
    • (1985) Biometrics , vol.41 , pp. 933-945
    • Finkelstein, D.1    Wolf, R.2
  • 11
    • 0001414599 scopus 로고
    • Nonparametric maximum likelihood estimation by the method of sieves
    • Geman A, Hwang C. Nonparametric maximum likelihood estimation by the method of sieves. Ann. Statist. 1982, 10:401-414.
    • (1982) Ann. Statist. , vol.10 , pp. 401-414
    • Geman, A.1    Hwang, C.2
  • 12
    • 0033862192 scopus 로고    scopus 로고
    • A proportional hazards model for multivariate interval-censored failure time data
    • Goggins W, Finkelstein D. A proportional hazards model for multivariate interval-censored failure time data. Biometrics 2000, 56:940-943.
    • (2000) Biometrics , vol.56 , pp. 940-943
    • Goggins, W.1    Finkelstein, D.2
  • 13
    • 0037441527 scopus 로고    scopus 로고
    • Inference for a linear regression model with an interval-censored covariate
    • Gómez G, Espinal A, Lagakos S. Inference for a linear regression model with an interval-censored covariate. Stat. Med. 2003, 22:409-425.
    • (2003) Stat. Med. , vol.22 , pp. 409-425
    • Gómez, G.1    Espinal, A.2    Lagakos, S.3
  • 14
    • 33846820182 scopus 로고    scopus 로고
    • Multiple imputation for interval-censored data with auxiliary variables
    • Hsu C, Taylor J, Murray S, Commenges D. Multiple imputation for interval-censored data with auxiliary variables. Stat. Med. 2007, 26:769-781.
    • (2007) Stat. Med. , vol.26 , pp. 769-781
    • Hsu, C.1    Taylor, J.2    Murray, S.3    Commenges, D.4
  • 15
    • 0030501199 scopus 로고    scopus 로고
    • Efficient estimation for the proportional hazards model with interval censoring
    • Huang J. Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 1996, 24:540-568.
    • (1996) Ann. Statist. , vol.24 , pp. 540-568
    • Huang, J.1
  • 16
    • 21744454088 scopus 로고    scopus 로고
    • Sieve estimation for the proportional-odds failure-time regression model with interval censoring
    • Huang J, Rossini A. Sieve estimation for the proportional-odds failure-time regression model with interval censoring. J. Amer. Statist. Assoc. 1997, 92:960-967.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 960-967
    • Huang, J.1    Rossini, A.2
  • 18
    • 77953966437 scopus 로고    scopus 로고
    • A least-squares approach to consistent information estimation in semiparametric models
    • Department of Biostatistics, University of Iowa
    • Huang J, Zhang Y, Hua L. A least-squares approach to consistent information estimation in semiparametric models. 2008, Department of Biostatistics, University of Iowa
    • (2008)
    • Huang, J.1    Zhang, Y.2    Hua, L.3
  • 19
    • 1142304590 scopus 로고    scopus 로고
    • On algorithms for restricted maximum likelihood estimation
    • Jamshidian M. On algorithms for restricted maximum likelihood estimation. Comput. Statist. Data Anal. 2004, 45:137-157.
    • (2004) Comput. Statist. Data Anal. , vol.45 , pp. 137-157
    • Jamshidian, M.1
  • 20
    • 0032375434 scopus 로고    scopus 로고
    • The iterative convex minorant algorithm for nonparametric estimation
    • Jongbloed G. The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist. 1998, 7:310-321.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 310-321
    • Jongbloed, G.1
  • 21
    • 0037114487 scopus 로고    scopus 로고
    • The analysis of multivariate interval-censored survival data
    • Kim M, Xue X. The analysis of multivariate interval-censored survival data. Stat. Med. 2002, 21:3715-3726.
    • (2002) Stat. Med. , vol.21 , pp. 3715-3726
    • Kim, M.1    Xue, X.2
  • 22
    • 0031455187 scopus 로고    scopus 로고
    • Hazard regression with interval-censored data
    • Kooperberg C, Clarkson D. Hazard regression with interval-censored data. Biometrics 1997, 53:1485-1494.
    • (1997) Biometrics , vol.53 , pp. 1485-1494
    • Kooperberg, C.1    Clarkson, D.2
  • 23
    • 0037364188 scopus 로고    scopus 로고
    • Rank estimation of log-linear regression with interval-censored data
    • Li L, Pu Z. Rank estimation of log-linear regression with interval-censored data. Lifetime Data Anal. 2003, 9:57-70.
    • (2003) Lifetime Data Anal. , vol.9 , pp. 57-70
    • Li, L.1    Pu, Z.2
  • 24
    • 0032335733 scopus 로고    scopus 로고
    • Linear regression with interval censored data
    • Li G, Zhang C. Linear regression with interval censored data. Ann. Statist. 1998, 26:1306-1327.
    • (1998) Ann. Statist. , vol.26 , pp. 1306-1327
    • Li, G.1    Zhang, C.2
  • 25
    • 0000070644 scopus 로고    scopus 로고
    • Additive hazards regression with current status data
    • Lin D, Oakes D, Ying Z. Additive hazards regression with current status data. Biometrika 1998, 85:289-298.
    • (1998) Biometrika , vol.85 , pp. 289-298
    • Lin, D.1    Oakes, D.2    Ying, Z.3
  • 27
    • 34548528995 scopus 로고    scopus 로고
    • Estimation of the mean function with panel count data using monotone polynomial splines
    • Lu M, Zhang Y, Huang J. Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 2007, 94:705-718.
    • (2007) Biometrika , vol.94 , pp. 705-718
    • Lu, M.1    Zhang, Y.2    Huang, J.3
  • 28
    • 0041482985 scopus 로고    scopus 로고
    • Efficient estimation in additive hazards regression with current status data
    • Martinussen T, Scheike T. Efficient estimation in additive hazards regression with current status data. Biometrika 2002, 89:649-658.
    • (2002) Biometrika , vol.89 , pp. 649-658
    • Martinussen, T.1    Scheike, T.2
  • 29
    • 0033475250 scopus 로고    scopus 로고
    • Extending the iterative convex minorant algorithm to the Cox model for interval-censored data
    • Pan W. Extending the iterative convex minorant algorithm to the Cox model for interval-censored data. J. Comput. Graph. Statist. 1999, 8:109-120.
    • (1999) J. Comput. Graph. Statist. , vol.8 , pp. 109-120
    • Pan, W.1
  • 30
    • 77956887170 scopus 로고
    • Regression with interval-censored data
    • Rabinowitz D, Tsiatis A, Aragon J. Regression with interval-censored data. Biometrika 1995, 82:501-513.
    • (1995) Biometrika , vol.82 , pp. 501-513
    • Rabinowitz, D.1    Tsiatis, A.2    Aragon, J.3
  • 31
    • 0000788854 scopus 로고
    • The gradient projection method for nonlinear programming
    • Rosen J. The gradient projection method for nonlinear programming. J. Soc. Ind. Appl. Math. 1960, 8:181-217.
    • (1960) J. Soc. Ind. Appl. Math. , vol.8 , pp. 181-217
    • Rosen, J.1
  • 32
    • 0032337536 scopus 로고    scopus 로고
    • Inference based on imputed failure times for the proportional hazards model with interval-censored data
    • Satten G, Datta S, Williamson J. Inference based on imputed failure times for the proportional hazards model with interval-censored data. J. Amer. Statist. Assoc. 1998, 93:318-327.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 318-327
    • Satten, G.1    Datta, S.2    Williamson, J.3
  • 34
    • 0035973216 scopus 로고    scopus 로고
    • Proportional hazards model for interval-censored failure times and time-dependent covariates: application to hazard of HIV infection of injecting drug users in prison
    • Seaman S, Bird S. Proportional hazards model for interval-censored failure times and time-dependent covariates: application to hazard of HIV infection of injecting drug users in prison. Stat. Med. 2001, 20:1855-1870.
    • (2001) Stat. Med. , vol.20 , pp. 1855-1870
    • Seaman, S.1    Bird, S.2
  • 35
    • 0000585433 scopus 로고    scopus 로고
    • Proportional odds regression and sieve maximum likelihood estimation
    • Shen X. Proportional odds regression and sieve maximum likelihood estimation. Biometrika 1998, 85:165-177.
    • (1998) Biometrika , vol.85 , pp. 165-177
    • Shen, X.1
  • 36
    • 21844489169 scopus 로고
    • Convergence rate of sieve estimates
    • Shen X, Wong W. Convergence rate of sieve estimates. Ann. Statist. 1994, 22:580-615.
    • (1994) Ann. Statist. , vol.22 , pp. 580-615
    • Shen, X.1    Wong, W.2
  • 37
    • 48049115986 scopus 로고    scopus 로고
    • Multiple augmentation for interval-censored data with measurement error
    • Song X, Ma S. Multiple augmentation for interval-censored data with measurement error. Stat. Med. 2008, 27:3178-3190.
    • (2008) Stat. Med. , vol.27 , pp. 3178-3190
    • Song, X.1    Ma, S.2
  • 38
    • 33749643150 scopus 로고    scopus 로고
    • Parametric survival models for interval-censored data with time-dependent covariates
    • Sparling Y, Younes N, Lachin J. Parametric survival models for interval-censored data with time-dependent covariates. Biostatistics 2006, 7:599-614.
    • (2006) Biostatistics , vol.7 , pp. 599-614
    • Sparling, Y.1    Younes, N.2    Lachin, J.3
  • 39
    • 0001227575 scopus 로고
    • Additive regression and other nonparametric models
    • Stone C. Additive regression and other nonparametric models. Ann. Statist. 1985, 13:689-705.
    • (1985) Ann. Statist. , vol.13 , pp. 689-705
    • Stone, C.1
  • 40
    • 0001719983 scopus 로고
    • The dimentionality reduction principle for generalized additive models
    • Stone C. The dimentionality reduction principle for generalized additive models. Ann. Statist. 1986, 14:590-606.
    • (1986) Ann. Statist. , vol.14 , pp. 590-606
    • Stone, C.1
  • 43
    • 0034359461 scopus 로고    scopus 로고
    • Two estimators of the mean of a counting process with panel count data
    • Wellner J, Zhang Y. Two estimators of the mean of a counting process with panel count data. Ann. Statist. 2000, 28:779-814.
    • (2000) Ann. Statist. , vol.28 , pp. 779-814
    • Wellner, J.1    Zhang, Y.2
  • 44
    • 50449107928 scopus 로고    scopus 로고
    • Likelihood-based semiparametric estimation methods for panel count data with covariates
    • Wellner J, Zhang Y. Likelihood-based semiparametric estimation methods for panel count data with covariates. Ann. Statist. 2007, 35:2106-2142.
    • (2007) Ann. Statist. , vol.35 , pp. 2106-2142
    • Wellner, J.1    Zhang, Y.2
  • 45
    • 2942599714 scopus 로고    scopus 로고
    • Sieve maximum likelihood estimator for semiparametric regression models with current status data
    • Xue H, Lam K, Li G. Sieve maximum likelihood estimator for semiparametric regression models with current status data. J. Amer. Statist. Assoc. 2004, 99:346-356.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 346-356
    • Xue, H.1    Lam, K.2    Li, G.3
  • 46
    • 1842434519 scopus 로고    scopus 로고
    • On algorithms for the nonparametric maximum likelihood estimator of the failure function with censored data
    • Zhang Y, Jamshidian M. On algorithms for the nonparametric maximum likelihood estimator of the failure function with censored data. J. Comput. Graph. Statist. 2004, 13:123-140.
    • (2004) J. Comput. Graph. Statist. , vol.13 , pp. 123-140
    • Zhang, Y.1    Jamshidian, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.