-
3
-
-
0027006892
-
-
10.2307/2061828
-
W. A. V. Clark, Demography 29, 451 (1992). 10.2307/2061828
-
(1992)
Demography
, vol.29
, pp. 451
-
-
Clark, W.A.V.1
-
4
-
-
0242641263
-
-
10.1146/annurev.soc.29.010202.100002
-
C. Z. Charles, Annu. Rev. Sociol. 29, 167 (2003). 10.1146/annurev.soc.29. 010202.100002
-
(2003)
Annu. Rev. Sociol.
, vol.29
, pp. 167
-
-
Charles, C.Z.1
-
7
-
-
73949143160
-
-
10.1073/pnas.0906263106
-
S. Grauwin, E. Bertin, R. Lemoy, and P. Jensen, Proc. Natl. Acad. Sci. U.S.A. 106, 20622 (2009). 10.1073/pnas.0906263106
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 20622
-
-
Grauwin, S.1
Bertin, E.2
Lemoy, R.3
Jensen, P.4
-
8
-
-
33845262066
-
-
10.1016/j.jpubeco.2006.03.008
-
R. Pancs and N. Vriend, J. Public Econ. 91, 1 (2007). 10.1016/j.jpubeco.2006.03.008
-
(2007)
J. Public Econ.
, vol.91
, pp. 1
-
-
Pancs, R.1
Vriend, N.2
-
9
-
-
3342895753
-
-
10.1016/j.jebo.2003.03.005
-
J. Zhang, J. Econ. Behav. Organ. 54, 533 (2004). 10.1016/j.jebo.2003.03. 005
-
(2004)
J. Econ. Behav. Organ.
, vol.54
, pp. 533
-
-
Zhang, J.1
-
12
-
-
77953964646
-
-
The only exception is a study with a nonfixed fraction of agents of each type, where the Schelling model is simply replaced by the Ising model: this corresponds to a situation with no vacancies and with moves consisting in replacing an agent of a given type by an agent of the other type
-
The only exception is a study with a nonfixed fraction of agents of each type, where the Schelling model is simply replaced by the Ising model: this corresponds to a situation with no vacancies and with moves consisting in replacing an agent of a given type by an agent of the other type.
-
-
-
-
18
-
-
36049058376
-
-
10.1103/PhysRev.141.517
-
M. Blume, Phys. Rev. 141, 517 (1966). 10.1103/PhysRev.141.517
-
(1966)
Phys. Rev.
, vol.141
, pp. 517
-
-
Blume, M.1
-
19
-
-
41849134194
-
-
10.1016/0031-8914(66)90027-9
-
H. W. Capel, Physica 32, 966 (1966). 10.1016/0031-8914(66)90027-9
-
(1966)
Physica
, vol.32
, pp. 966
-
-
Capel, H.W.1
-
20
-
-
77954002921
-
-
Ph.D. thesis, University of Queensland
-
M. Kozlowski, Ph.D. thesis, University of Queensland, 2007.
-
(2007)
-
-
Kozlowski, M.1
-
21
-
-
0030262768
-
-
10.1016/0378-4371(96)00143-4
-
S. Branco, Physica A 232, 477 (1996). 10.1016/0378-4371(96)00143-4
-
(1996)
Physica A
, vol.232
, pp. 477
-
-
Branco, S.1
-
23
-
-
21344494175
-
-
10.1088/0305-4470/26/21/011
-
A. Lipowski and M. Suzuki, J. Phys. A 26, 5695 (1993). 10.1088/0305-4470/26/21/011
-
(1993)
J. Phys. A
, vol.26
, pp. 5695
-
-
Lipowski, A.1
Suzuki, M.2
-
24
-
-
16844368038
-
-
10.1103/PhysRevB.71.012411
-
Yu. I. Dublenych, Phys. Rev. B 71, 012411 (2005). 10.1103/PhysRevB.71. 012411
-
(2005)
Phys. Rev. B
, vol.71
, pp. 012411
-
-
Dublenych, Yu.I.1
-
25
-
-
77954024903
-
-
The proof is left to the reader. One shows that the considered dynamics is a Monte Carlo dynamics for a BEG model at the temperature 1/β, with a transition matrix which is irreducible and satisfies the detailed-balance condition. If q± is the fraction of agents of type ±1 in the reservoir, for any nonzero rate of exchanges with the reservoir one gets as stationary state the Gibbs distribution associated to the energy EBEG (K=2T-1,2D ) - 1 2β [ln ( q+ q- ) i ci2 +ln q+ q- i ci ]. In the present case q± =1/2
-
The proof is left to the reader. One shows that the considered dynamics is a Monte Carlo dynamics for a BEG model at the temperature 1 / β, with a transition matrix which is irreducible and satisfies the detailed-balance condition. If q ± is the fraction of agents of type ± 1 in the reservoir, for any nonzero rate of exchanges with the reservoir one gets as stationary state the Gibbs distribution associated to the energy E B E G (K = 2 T - 1, 2 D) - 1 2 β [ln (q + q -) i c i 2 + ln q + q - i c i]. In the present case q ± = 1 / 2.
-
-
-
|