메뉴 건너뛰기




Volumn 14, Issue 11, 2010, Pages 1165-1185

A classification and regression technique to handle heterogeneous and imperfect information

Author keywords

Dempster Shafer theory; Evidence theory; Gaussian mixture models; Handling imperfect observations; Inductive inference; Inductive learning

Indexed keywords

DEMPSTER-SHAFER THEORY; EVIDENCE THEORIES; GAUSSIAN MIXTURE MODEL; INDUCTIVE INFERENCE; INDUCTIVE LEARNING;

EID: 77953916654     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-009-0509-y     Document Type: Article
Times cited : (13)

References (27)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine
    • Asuncion A, Newman DJ (2007) UCI machine learning repository (http://www. ics. uci. edu/mlearn/MLRepository. html). University of California, School of Information and Computer Science, Irvine.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 77953915278 scopus 로고    scopus 로고
    • Cadenas JM, Garrido MC (2002) Imperfección Explícita versus adaptación de la información en MFGN extendido, In: Proceedings of the XI Congreso Español sobre Tecnologías y Lógica Fuzzy, León, Spain, pp 547-552.
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(19): 1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , Issue.19 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 77953911582 scopus 로고    scopus 로고
    • Garrido MC, Cadenas JM, Ruiz A (1999) Visual object detection using fuzzy concepts. In: Proceedings of the International ICSC Congress on computational intelligence methods and applications, Rochester, USA, pp 1-6.
  • 9
    • 77953912561 scopus 로고    scopus 로고
    • Grabisch M, Disport F (1992) A comparison of some methods of fuzzy classification on real data. In: Proceedings of the 2nd international conference on fuzzy logic and neural network. Iizuka, Japan, pp 659-662.
  • 12
    • 38749146278 scopus 로고    scopus 로고
    • A novel fuzzy classifier with Choquet integral-based grey relational analysis for pattern classfication problems
    • Hu Y-C (2008) A novel fuzzy classifier with Choquet integral-based grey relational analysis for pattern classfication problems. Soft Comput 12: 523-533.
    • (2008) Soft Comput , vol.12 , pp. 523-533
    • Hu, Y.-C.1
  • 13
    • 0030409030 scopus 로고    scopus 로고
    • Janikow CZ (1996) Exemplar learning in fuzzy decision trees. In: Proceeding of the FUZZ-IEEE, New Orleans, USA, pp 1500-1505.
  • 14
    • 0031996838 scopus 로고    scopus 로고
    • Fuzzy decision trees: Issues and methods
    • Janikow CZ (1998) Fuzzy decision trees: issues and methods. IEEE Trans Man Systems Cybern 28: 1-14.
    • (1998) IEEE Trans Man Systems Cybern , vol.28 , pp. 1-14
    • Janikow, C.Z.1
  • 15
    • 0008440660 scopus 로고
    • Probabilistic versus possibilistic conceptualization of uncertainty
    • B. M. Ayyub, M. M. Gupta, and L. N. Kanal (Eds.), Amsterdam: Elsevier
    • Klir GJ (1992) Probabilistic versus possibilistic conceptualization of uncertainty. In: Ayyub BM, Gupta MM, Kanal LN (eds) Analysis and management of uncertainty: theory and applications. Elsevier, Amsterdam, pp 13-25.
    • (1992) Analysis and Management of Uncertainty: Theory and Applications. , pp. 13-25
    • Klir, G.J.1
  • 17
    • 55749108162 scopus 로고    scopus 로고
    • Local boosting of decision stumps for regression and classification problems
    • Kotsiantis SB, Kanellopoulos D, Pintelas PE (2006) Local boosting of decision stumps for regression and classification problems. J Comput 1(4): 30-37.
    • (2006) J Comput , vol.1 , Issue.4 , pp. 30-37
    • Kotsiantis, S.B.1    Kanellopoulos, D.2    Pintelas, P.E.3
  • 21
    • 0029184523 scopus 로고
    • Fuzzy multi-layer perceptron, inferencing and rule generation
    • Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans Neural Netw 6: 51-63.
    • (1995) IEEE Trans Neural Netw , vol.6 , pp. 51-63
    • Mitra, S.1    Pal, S.K.2
  • 22
    • 0000120607 scopus 로고
    • Representation theorems for fuzzy concepts
    • Negoita CV, Ralescu DA (1975) Representation theorems for fuzzy concepts. Kybernetes 4: 169-174.
    • (1975) Kybernetes , vol.4 , pp. 169-174
    • Negoita, C.V.1    Ralescu, D.A.2
  • 23
    • 77953915145 scopus 로고    scopus 로고
    • Quinlan JR (1993) C4. 5: programs for machine learning. The Morgan Kaufmann Series in Machine Learning, California.
  • 24
    • 0242452710 scopus 로고    scopus 로고
    • Probabilistic inference from arbitrary uncertainty using mixtures of factorized generalized Gaussians
    • Ruiz A, López de Teruel PE, Garrido MC (1998) Probabilistic inference from arbitrary uncertainty using mixtures of factorized generalized Gaussians. J Artif Intell Res 9: 167-217.
    • (1998) JArtif Intell Res , vol.9 , pp. 167-217
    • Ruiz, A.1    López de Teruel, P.E.2    Garrido, M.C.3
  • 25
    • 0036828078 scopus 로고    scopus 로고
    • Using Dempster-Shafer's theory of evidence to combine aspects of information use
    • Ruthven I, Lalmas M (2002) Using Dempster-Shafer's theory of evidence to combine aspects of information use. J Intell Inf Syst 19(3): 267-301.
    • (2002) J Intell Inf Syst , vol.19 , Issue.3 , pp. 267-301
    • Ruthven, I.1    Lalmas, M.2
  • 26
    • 0004204162 scopus 로고    scopus 로고
    • San Francisco: Morgan Kaufmann Publishers
    • Witten IH, Frank E (2000) Data mining. Morgan Kaufmann Publishers, San Francisco.
    • (2000) Data Mining
    • Witten, I.H.1    Frank, E.2
  • 27
    • 77953917587 scopus 로고    scopus 로고
    • Yager RR, Kacprzyk J, Fedrizzi M (eds) (1994) Advances in the Dempster-Shafer theory of evidence. Wiley, New York.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.