메뉴 건너뛰기




Volumn , Issue , 2010, Pages 330-333

Design of support vector machines with time frequency kernels for classification of EEG signals

Author keywords

EEG classification; Support vector machine; Time frequency kernels

Indexed keywords

CLASSIFICATION METHODS; CLASSIFICATION PERFORMANCE; COHEN'S CLASS; COMMON FEATURES; COMPARATIVE ASSESSMENT; EEG CLASSIFICATION; EEG SIGNALS; FEATURE SPACE; FEATURE VECTORS; FREQUENCY DOMAINS; GAUSSIAN KERNELS; INPUT DATAS; MENTAL TASKS; NONSTATIONARY; SVM CLASSIFIERS; TIME FREQUENCY; TIME FREQUENCY KERNELS; TIME-FREQUENCY TRANSFORMATION; WIGNER VILLE;

EID: 77953886415     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TECHSYM.2010.5469169     Document Type: Conference Paper
Times cited : (9)

References (16)
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, A. Elisseeff, 'An introduction to variable and feature selection,' J. Machine Learning Res. Vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Res. , vol.3 , pp. 1157-1182
    • Guyon, A.E.1
  • 8
    • 84964461218 scopus 로고    scopus 로고
    • PCA-based linear dynamical systems for multichannel EEG classification
    • Nov.
    • Lee, H., Choi, S., 'PCA-based linear dynamical systems for multichannel EEG classification', Proceedings of the 9th ICONIP '02. Vol. 2, Nov. 2002, pp. 745-749.
    • (2002) Proceedings of the 9th ICONIP '02 , vol.2 , pp. 745-749
    • Lee, H.1    Choi, S.2
  • 11
    • 0032168758 scopus 로고    scopus 로고
    • Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters
    • Sept.
    • Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K., 'Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters', IEEE Trans. on Neural Systems and Rehabilitation] , Volume: 6, Issue: 3, Sept. 1998 Pages:316-325.
    • (1998) IEEE Trans. on Neural Systems and Rehabilitation , vol.6 , Issue.3 , pp. 316-325
    • Pfurtscheller, G.1    Neuper, C.2    Schlogl, A.3    Lugger, K.4
  • 13
    • 77953904013 scopus 로고    scopus 로고
    • http://sccn.ucsd.edu/eeglab
  • 14
    • 1242283941 scopus 로고    scopus 로고
    • EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
    • Arnaud Delorme, Scott Makeig, 'EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis', Journal of Neuroscience Methods 134 (2004), 9-21.
    • (2004) Journal of Neuroscience Methods , vol.134 , pp. 9-21
    • Delorme, A.1    Makeig, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.