메뉴 건너뛰기




Volumn 3, Issue 3, 2009, Pages 543-548

Induction motor bearing failure diagnosis with ANN and hybrid networksmodel

Author keywords

AI; ANN; Distance evaluation technique; Fault diagnosis; IMB

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; ARTIFICIAL INTELLIGENT; CASE WESTERN RESERVE UNIVERSITY; FAULT DIAGNOSIS; FEATURES SELECTION; FREQUENCY DOMAINS; HIGH FREQUENCY COMPONENTS; HYBRID NETWORK; MOTOR BEARINGS; TIME DOMAIN; VIBRATION SIGNAL;

EID: 77953885611     PISSN: 1881803X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (15)
  • 1
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combinationwith GAs
    • DOI 10.1016/j.ymssp.2006.11.003, PII S0888327006002512
    • Y. Lei, Z. He, Y. Zi and Q. Hu, Fault diagnosis of rotating machinerybased on multiple ANFIS combination with GAs, Mechanical Systems and SignalProcessing, Vol. 21, pp. 2280-2294, 2007. (Pubitemid 46550775)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 3
    • 2942630598 scopus 로고    scopus 로고
    • A comparison of two learning mechanisms for the automatic design of fuzzydiagnosis systems for rotating machinery
    • J. M. F. Salido and S. Murakami, A comparison of two learning mechanismsfor the automatic design of fuzzy diagnosis systems for rotating machinery,Applied Soft Computing, Vol. 4, pp. 413-422, 2004.
    • (2004) Applied Soft Computing , vol.4 , pp. 413-422
    • Salido, J.M.F.1    Murakami, S.2
  • 4
    • 34748819869 scopus 로고    scopus 로고
    • Early classifications of bearing faults using hidden markov models,Gaussian mixture models, mel-frequency cepstral coefficients and fractals
    • F. V. Nelwamondo, T. Marwala and U. Mahola, Early classifications ofbearing faults using hidden Markov models, Gaussian mixture models,Mel-Frequency cepstral coefficients and fractals, International Journal ofInnovative Computing, Information and, Control, Vol. 2, No. 6, pp. 1281-1299,2006.
    • (2006) International Journal of Innovative Computing, Information And, Control , vol.2 , Issue.6 , pp. 1281-1299
    • Nelwamondo, F.V.1    Marwala, T.2    Mahola, U.3
  • 5
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet packagetransform and SVMs ensemble
    • Q. Hu, Z. He, Z. Zhang and Y. Zi, Fault diagnosis of rotating machinerybased on improved wavelet package transform and SVMs ensemble, MechanicalSystems and Signal Processing, Vol. 21, pp. 688-705, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 6
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelopespectrum ad SVM
    • Y. Yang, D. Yu and J. Cheng, A fault diagnosis approach for rollerbearing based on IMF envelope spectrum ad SVM, Measurement, Vol. 40, pp.943-950, 2007.
    • (2007) Measurement , vol.40 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 7
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm based fault diagnosis using compensationdistance evaluation technique
    • Y. Lei, Z. He, Y. Zi and X. Chen, New clustering algorithm based faultdiagnosis using compensation distance evaluation technique, Mechanical Systemsand Signal Processing, Vol. 22, pp. 419-435, 2008.
    • (2008) Mechanical Systems and Signal Processing , vol.22 , pp. 419-435
    • Lei, Y.1    He, Z.2    Zi, Y.3    Chen, X.4
  • 8
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • Y. Lei, Z. He and Y. Zi, A new approach to intelligent fault diagnosis ofrotating machinery, Expert Systems with Applications, Vol. 35, No. 4, pp.1593-1600, 2008.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1593-1600
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 9
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on fisher discriminant analysis and support vectormachines
    • L. H. Chiang, M. E. Kotancek and A. K. Kordon, Fault diagnosis based onFisher discriminant analysis and support vector machines, Computer and ChemicalEngineering, Vol. 28, pp. 1389-1401, 2004.
    • (2004) Computer and Chemical Engineering , vol.28 , pp. 1389-1401
    • Chiang, L.H.1    Kotancek, M.E.2    Kordon, A.K.3
  • 10
    • 63049128075 scopus 로고    scopus 로고
    • Development of artificial neural network based fault diagnosis ofinduction motor bearing
    • A. K. Mahamad and T. Hiyama, Development of artificial neural networkbased fault diagnosis of induction motor bearing, IEEE International Power andEnergy Conference, pp. 1387-1392, 2008.
    • (2008) IEEE International Power and Energy Conference , pp. 1387-1392
    • Mahamad, A.K.1    Hiyama, T.2
  • 11
    • 69949140474 scopus 로고    scopus 로고
    • Detection of multiple sensor faults in a palm oil fractionation plantusing artificial neural network
    • A. Ahmad, and M. Kamaruddin, Detection of multiple sensor faults in apalm oil fractionation plant using artificial neural network, Regional Symposiumon Chemical Engineering, 2002.
    • (2002) Regional Symposium on Chemical Engineering
    • Ahmad, A.1    Kamaruddin, M.2
  • 12
    • 34147109390 scopus 로고    scopus 로고
    • Fault diagnosis system of induction motors using feature extraction,feature selection and classification algorithm
    • B. S. Yang, T. Han and Z. J. Yin, Fault diagnosis system of inductionmotors using feature extraction, feature selection and classification algorithm,JSME International Journal Series C, Vol. 49, No. 3, 2006.
    • (2006) JSME International Journal Series C , vol.49 , Issue.3
    • Yang, B.S.1    Han, T.2    Yin, Z.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.