-
1
-
-
34047251505
-
Fault diagnosis of rotating machinery based on multiple ANFIS combinationwith GAs
-
DOI 10.1016/j.ymssp.2006.11.003, PII S0888327006002512
-
Y. Lei, Z. He, Y. Zi and Q. Hu, Fault diagnosis of rotating machinerybased on multiple ANFIS combination with GAs, Mechanical Systems and SignalProcessing, Vol. 21, pp. 2280-2294, 2007. (Pubitemid 46550775)
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, Issue.5
, pp. 2280-2294
-
-
Lei, Y.1
He, Z.2
Zi, Y.3
Hu, Q.4
-
2
-
-
34548515285
-
Artificial neural network approach for fault detection in rotary system
-
S. Rajakarunakaran, P. Venkumar, D. Devaraj and K. Surya Prakasa Rao,Artificial neural network approach for fault detection in rotary system, AppliedSoft Computing, Vol. 8, pp. 740-748, 2008.
-
(2008)
Applied Soft Computing
, vol.8
, pp. 740-748
-
-
Rajakarunakaran, S.1
Venkumar, P.2
Devaraj, D.3
Surya Prakasa Rao, K.4
-
3
-
-
2942630598
-
A comparison of two learning mechanisms for the automatic design of fuzzydiagnosis systems for rotating machinery
-
J. M. F. Salido and S. Murakami, A comparison of two learning mechanismsfor the automatic design of fuzzy diagnosis systems for rotating machinery,Applied Soft Computing, Vol. 4, pp. 413-422, 2004.
-
(2004)
Applied Soft Computing
, vol.4
, pp. 413-422
-
-
Salido, J.M.F.1
Murakami, S.2
-
4
-
-
34748819869
-
Early classifications of bearing faults using hidden markov models,Gaussian mixture models, mel-frequency cepstral coefficients and fractals
-
F. V. Nelwamondo, T. Marwala and U. Mahola, Early classifications ofbearing faults using hidden Markov models, Gaussian mixture models,Mel-Frequency cepstral coefficients and fractals, International Journal ofInnovative Computing, Information and, Control, Vol. 2, No. 6, pp. 1281-1299,2006.
-
(2006)
International Journal of Innovative Computing, Information And, Control
, vol.2
, Issue.6
, pp. 1281-1299
-
-
Nelwamondo, F.V.1
Marwala, T.2
Mahola, U.3
-
5
-
-
33750503791
-
Fault diagnosis of rotating machinery based on improved wavelet packagetransform and SVMs ensemble
-
Q. Hu, Z. He, Z. Zhang and Y. Zi, Fault diagnosis of rotating machinerybased on improved wavelet package transform and SVMs ensemble, MechanicalSystems and Signal Processing, Vol. 21, pp. 688-705, 2007.
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, pp. 688-705
-
-
Hu, Q.1
He, Z.2
Zhang, Z.3
Zi, Y.4
-
6
-
-
34848858238
-
A fault diagnosis approach for roller bearing based on IMF envelopespectrum ad SVM
-
Y. Yang, D. Yu and J. Cheng, A fault diagnosis approach for rollerbearing based on IMF envelope spectrum ad SVM, Measurement, Vol. 40, pp.943-950, 2007.
-
(2007)
Measurement
, vol.40
, pp. 943-950
-
-
Yang, Y.1
Yu, D.2
Cheng, J.3
-
7
-
-
36048939640
-
New clustering algorithm based fault diagnosis using compensationdistance evaluation technique
-
Y. Lei, Z. He, Y. Zi and X. Chen, New clustering algorithm based faultdiagnosis using compensation distance evaluation technique, Mechanical Systemsand Signal Processing, Vol. 22, pp. 419-435, 2008.
-
(2008)
Mechanical Systems and Signal Processing
, vol.22
, pp. 419-435
-
-
Lei, Y.1
He, Z.2
Zi, Y.3
Chen, X.4
-
8
-
-
48749115318
-
A new approach to intelligent fault diagnosis of rotating machinery
-
Y. Lei, Z. He and Y. Zi, A new approach to intelligent fault diagnosis ofrotating machinery, Expert Systems with Applications, Vol. 35, No. 4, pp.1593-1600, 2008.
-
(2008)
Expert Systems with Applications
, vol.35
, Issue.4
, pp. 1593-1600
-
-
Lei, Y.1
He, Z.2
Zi, Y.3
-
9
-
-
2342505830
-
Fault diagnosis based on fisher discriminant analysis and support vectormachines
-
L. H. Chiang, M. E. Kotancek and A. K. Kordon, Fault diagnosis based onFisher discriminant analysis and support vector machines, Computer and ChemicalEngineering, Vol. 28, pp. 1389-1401, 2004.
-
(2004)
Computer and Chemical Engineering
, vol.28
, pp. 1389-1401
-
-
Chiang, L.H.1
Kotancek, M.E.2
Kordon, A.K.3
-
10
-
-
63049128075
-
Development of artificial neural network based fault diagnosis ofinduction motor bearing
-
A. K. Mahamad and T. Hiyama, Development of artificial neural networkbased fault diagnosis of induction motor bearing, IEEE International Power andEnergy Conference, pp. 1387-1392, 2008.
-
(2008)
IEEE International Power and Energy Conference
, pp. 1387-1392
-
-
Mahamad, A.K.1
Hiyama, T.2
-
11
-
-
69949140474
-
Detection of multiple sensor faults in a palm oil fractionation plantusing artificial neural network
-
A. Ahmad, and M. Kamaruddin, Detection of multiple sensor faults in apalm oil fractionation plant using artificial neural network, Regional Symposiumon Chemical Engineering, 2002.
-
(2002)
Regional Symposium on Chemical Engineering
-
-
Ahmad, A.1
Kamaruddin, M.2
-
12
-
-
34147109390
-
Fault diagnosis system of induction motors using feature extraction,feature selection and classification algorithm
-
B. S. Yang, T. Han and Z. J. Yin, Fault diagnosis system of inductionmotors using feature extraction, feature selection and classification algorithm,JSME International Journal Series C, Vol. 49, No. 3, 2006.
-
(2006)
JSME International Journal Series C
, vol.49
, Issue.3
-
-
Yang, B.S.1
Han, T.2
Yin, Z.J.3
-
15
-
-
0027601884
-
ANFIS: Actaptive network-based fuzzy inference system
-
J. S. R. Jang, ANFIS: Actaptive network-based fuzzy inference system,IEEE Trransactions on System, Man and, Cybernetics, Vol. 23, pp. 665-685, 1993.
-
(1993)
IEEE Trransactions on System, Man And, Cybernetics
, vol.23
, pp. 665-685
-
-
Jang, J.S.R.1
|