메뉴 건너뛰기




Volumn 16, Issue 6, 2010, Pages 567-584

An improved PSO for parameter determination and feature selection of SVR and its application in STLE

Author keywords

Feature selection; Parameter determination; Particle swarm optimization (PSO); Short term load forecasting (STLF); Simulated annealing (SA); Support vector regression (SVR)

Indexed keywords

FEATURE SELECTION; FORECASTING ACCURACY; GLOBAL SEARCHING; IMPROVED METHODS; IMPROVED PARTICLE SWARM OPTIMIZATION; IMPROVED PSO; INPUT FEATURES; KERNEL PARAMETER; NORTH CHINA; OPERATIONAL DATA; PARAMETER DETERMINATION; POWER GRIDS; SHORT TERM LOAD FORECASTING; SIMULATED ANNEALING ALGORITHMS; SUPPORT VECTOR REGRESSIONS;

EID: 77953861516     PISSN: 15423980     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (35)
  • 3
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based attribute selection and parameter optimization for support vector machine
    • C.-L. Huang, C.-J. Wang. A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 31(2) (2006), 231-240.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 4
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machine
    • C. W. Hsu, C. J. Lin. A simple decomposition method for support vector machine, Mach. Learn. 46(1-3) (2002), 219-314.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 219-314
    • Hsu, C.W.1    Lin, C.J.2
  • 7
    • 54049084147 scopus 로고    scopus 로고
    • Particle swarm optimization with FUSS and RWS for high dimensional functions
    • Zhihua Cui, Xingjuan Cai, Jianchao Zeng, and Guoji Sun. Particle Swarm Optimization with FUSS and RWS for High Dimensional Functions, Applied Mathematics and Computation205(1) (2008), 98-108.
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.1 , pp. 98-108
    • Cui Zhihua1    Cai Xingjuan2    Zeng Jianchao3    Sun Guoji4
  • 9
    • 70449337250 scopus 로고    scopus 로고
    • Predicted modified PSO with time-varying accelerator coefficients
    • Cai, X., Cui, Y., and Tan, Y. Predicted modified PSO with time-varying acceleratorcoefficients. Int. J. Bio-Inspired Computation 1(1/2) (2009), 50-60.
    • (2009) Int. J. Bio-Inspired Computation , vol.1 , Issue.1-2 , pp. 50-60
    • Cai, X.1    Cui, Y.2    Tan, Y.3
  • 10
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • F. van den Bergh, A. P. Engelbrecht. A study of particle swarm optimization particletrajectories. Inf. Sci. 176(8) (2006), 937-971.
    • (2006) Inf. Sci , vol.176 , Issue.8 , pp. 937-971
    • Van Den Bergh, F.1    Engelbrecht, A.P.2
  • 11
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • A. Chatterjee, P. Siarry. Nonlinear inertia weight variation for dynamic adaptation in particleswarm optimization. Comput. Operations Res. 33(3) (2006), 859-871.
    • (2006) Comput. Operations Res. , vol.33 , Issue.3 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 12
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-basedANN with simulated annealing technique
    • D. A.Yi, G. E. Xiu-run. An improved PSO-basedANN with simulated annealing technique.Neurocomputing 63(1) (2005), 527-533.
    • (2005) Neurocomputing , vol.63 , Issue.1 , pp. 527-533
    • Yi, D.A.1    Xiu-run, G.E.2
  • 13
    • 33645213044 scopus 로고    scopus 로고
    • A hybrid particle swarm optimizationalgorithm for optimal task assignment in distributed systems
    • P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang. A hybrid particle swarm optimizationalgorithm for optimal task assignment in distributed systems. Comput. Stand. Interfaces28(4) (2006), 441-450.
    • (2006) Comput. Stand. Interfaces , vol.28 , Issue.4 , pp. 441-450
    • Yin, P.-Y.1    Yu, S.-S.2    Wang, P.-P.3    Wang, Y.-T.4
  • 16
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • MIT Press, Cambridge, MA, USA
    • U. KreBel. Pairwise Classification and Support Vector Machines. Advances in KernelMethods-Support Vector Learning. MIT Press, Cambridge, MA, USA, pp. 254-268, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 254-268
    • KreBel, U.1
  • 18
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noiseestimation for SVM regression
    • Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noiseestimation for SVM regression. Neural Networks 17(1) (2004), 113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky Vladimir1    Yunqian, Ma.2
  • 23
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binaryparticle swarms
    • D. K.Agrafiotis,W. Cedeno. Feature selection for structure-activity correlation using binaryparticle swarms. J. Med. Chem. 45(5) (2002), 1098-1107.
    • (2002) J. Med. Chem. , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 27
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. L. Salzberg. On comparing classifiers: pitfalls to avoid and a recommended approach.Data Min. Knowl. Discov. 1 (1997), 317-327.
    • (1997) Data Min. Knowl. Discov. , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 29
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science University of California, Irvine, CA
    • P. M. Murphy, D. W. Aha. (2001). UCI Repository of machine learning databases,Department of Information and Computer Science. University of California, Irvine, CA,http://www.ics.uci.edu/mlearn/MLRepository.html .
    • (2001) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, D.W.2
  • 30
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay, F. E. H., Cao, L. J. Modified support vector machines in financial time series forecasting.Neurocomputing 48(10) (2002), 847-861.
    • (2002) Neurocomputing , vol.48 , Issue.10 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 31
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • PAI Ping-feng , HONG Wei-chiang. Support vector machines with simulated annealingalgorithms in electricity load forecasting. Energy Conversion and Management 46(17)(2005), 2669-2688.
    • (2005) Energy Conversion and Management , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.-F.1    Hong, W.-C.2
  • 32
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
    • PAI Ping-feng , HONGWei-chiang. Forecasting regional electricity load based on recurrentsupport vector machines with genetic algorithms. Electric Power Systems Research 74(3)(2005), 417-425.
    • (2005) Electric Power Systems Research , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.-F.1    Hong, W.-C.2
  • 33
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • CAO Li-juan. Support vector machines experts for time series forecasting. Neurocomputing51(4) (2003), 321-339.
    • (2003) Neurocomputing , vol.51 , Issue.4 , pp. 321-339
    • Cao, L.-J.1
  • 34
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement directionwith support vector machine
    • HUANGWei, Nakamori Y,WANG Shou-yang. Forecasting stock market movement directionwith support vector machine. Computers and Operations Research 32(10) (2005),2513-2522.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 35
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Frauke Friedrichs, Christian Igel. Evolutionary tuning of multiple SVM parameters.Neurocomputing 64 (2005), 107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs Frauke1    Igel Christian2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.