-
3
-
-
33748076461
-
A GA-based attribute selection and parameter optimization for support vector machine
-
C.-L. Huang, C.-J. Wang. A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 31(2) (2006), 231-240.
-
(2006)
Expert Syst. Appl.
, vol.31
, Issue.2
, pp. 231-240
-
-
Huang, C.-L.1
Wang, C.-J.2
-
4
-
-
0036158552
-
A simple decomposition method for support vector machine
-
C. W. Hsu, C. J. Lin. A simple decomposition method for support vector machine, Mach. Learn. 46(1-3) (2002), 219-314.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 219-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
8
-
-
70349865411
-
Hybrid particle swarm optimizationalgorithm with fine tuning operators
-
Ramana Murthy, G, SenthilArumugam, M., and Loo, C. K. Hybrid particle swarm optimizationalgorithm with fine tuning operators. Int. J. Bio-Inspired Computation 1(1/2) (2009),14-31.
-
(2009)
Int. J. Bio-Inspired Computation
, vol.1
, Issue.1-2
, pp. 14-31
-
-
Ramana Murthy, G.1
SenthilArumugam, M.2
Loo, C.K.3
-
9
-
-
70449337250
-
Predicted modified PSO with time-varying accelerator coefficients
-
Cai, X., Cui, Y., and Tan, Y. Predicted modified PSO with time-varying acceleratorcoefficients. Int. J. Bio-Inspired Computation 1(1/2) (2009), 50-60.
-
(2009)
Int. J. Bio-Inspired Computation
, vol.1
, Issue.1-2
, pp. 50-60
-
-
Cai, X.1
Cui, Y.2
Tan, Y.3
-
10
-
-
31944448941
-
A study of particle swarm optimization particle trajectories
-
F. van den Bergh, A. P. Engelbrecht. A study of particle swarm optimization particletrajectories. Inf. Sci. 176(8) (2006), 937-971.
-
(2006)
Inf. Sci
, vol.176
, Issue.8
, pp. 937-971
-
-
Van Den Bergh, F.1
Engelbrecht, A.P.2
-
11
-
-
23344434757
-
Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
-
A. Chatterjee, P. Siarry. Nonlinear inertia weight variation for dynamic adaptation in particleswarm optimization. Comput. Operations Res. 33(3) (2006), 859-871.
-
(2006)
Comput. Operations Res.
, vol.33
, Issue.3
, pp. 859-871
-
-
Chatterjee, A.1
Siarry, P.2
-
12
-
-
12144252495
-
An improved PSO-basedANN with simulated annealing technique
-
D. A.Yi, G. E. Xiu-run. An improved PSO-basedANN with simulated annealing technique.Neurocomputing 63(1) (2005), 527-533.
-
(2005)
Neurocomputing
, vol.63
, Issue.1
, pp. 527-533
-
-
Yi, D.A.1
Xiu-run, G.E.2
-
13
-
-
33645213044
-
A hybrid particle swarm optimizationalgorithm for optimal task assignment in distributed systems
-
P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang. A hybrid particle swarm optimizationalgorithm for optimal task assignment in distributed systems. Comput. Stand. Interfaces28(4) (2006), 441-450.
-
(2006)
Comput. Stand. Interfaces
, vol.28
, Issue.4
, pp. 441-450
-
-
Yin, P.-Y.1
Yu, S.-S.2
Wang, P.-P.3
Wang, Y.-T.4
-
14
-
-
70449378519
-
Tackling magnetoencephalography with particle swarm optimization
-
Parsopoulos, K. E., Kariotou, F., Dassios, G., and Vrahatis, M. N. Tackling magnetoencephalography with particle swarm optimization. Int. J. Bio-Inspired Computation 1(1/2)(2009), 32-49.
-
(2009)
Int. J. Bio-Inspired Computation
, vol.1
, Issue.1-2
, pp. 32-49
-
-
Parsopoulos, K.E.1
Kariotou, F.2
Dassios, G.3
Vrahatis, M.N.4
-
16
-
-
0002229304
-
Pairwise classification and support vector machines
-
MIT Press, Cambridge, MA, USA
-
U. KreBel. Pairwise Classification and Support Vector Machines. Advances in KernelMethods-Support Vector Learning. MIT Press, Cambridge, MA, USA, pp. 254-268, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 254-268
-
-
KreBel, U.1
-
18
-
-
0346250790
-
Practical selection of SVM parameters and noiseestimation for SVM regression
-
Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noiseestimation for SVM regression. Neural Networks 17(1) (2004), 113-126.
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky Vladimir1
Yunqian, Ma.2
-
21
-
-
0031352450
-
A discrete binary version of the particle swarm algorithm
-
Piscataway, NJ
-
J. Kennedy, R. C. Eberhart. A discrete binary version of the particle swarm algorithm.In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics.Piscataway, NJ, pp. 4104-4109, 1997.
-
(1997)
Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics
, pp. 4104-4109
-
-
Kennedy, J.1
Eberhart, R.C.2
-
23
-
-
0037186503
-
Feature selection for structure-activity correlation using binaryparticle swarms
-
D. K.Agrafiotis,W. Cedeno. Feature selection for structure-activity correlation using binaryparticle swarms. J. Med. Chem. 45(5) (2002), 1098-1107.
-
(2002)
J. Med. Chem.
, vol.45
, Issue.5
, pp. 1098-1107
-
-
Agrafiotis, D.K.1
Cedeno, W.2
-
25
-
-
3843050541
-
-
Technical Report, Department of Computer Scienceand Information Engineering, National Taiwan University, available at:
-
H. T. Lin, C. J. Lin. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, Technical Report, Department of Computer Scienceand Information Engineering, National Taiwan University, available at: http://www.csie.ntu.edu.tw/cjlin/papers/tanh.pdf.
-
(2003)
A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods
-
-
Lin, H.T.1
Lin, C.J.2
-
26
-
-
0003065528
-
-
in: Stephanie Forrest (ed.),Fifth International Conference on Genetic Algorithms San Mateo, CA, Morgan Kaufmann
-
W. F. Punch, E. D. Goodman, M. Pei, C.-S. Lai, P. Hovland, and R. Enbody. Further researchon feature selection and classification using genetic algorithms, in: Stephanie Forrest (ed.),Fifth International Conference on Genetic Algorithms. San Mateo, CA, Morgan Kaufmann,pp. 557-564, 1993.
-
(1993)
Further Researchon Feature Selection and Classification using Genetic Algorithms
, pp. 557-564
-
-
Punch, W.F.1
Goodman, E.D.2
Pei, M.3
Lai, C.-S.4
Hovland, P.5
Enbody, R.6
-
27
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
S. L. Salzberg. On comparing classifiers: pitfalls to avoid and a recommended approach.Data Min. Knowl. Discov. 1 (1997), 317-327.
-
(1997)
Data Min. Knowl. Discov.
, vol.1
, pp. 317-327
-
-
Salzberg, S.L.1
-
29
-
-
0003408496
-
-
Department of Information and Computer Science University of California, Irvine, CA
-
P. M. Murphy, D. W. Aha. (2001). UCI Repository of machine learning databases,Department of Information and Computer Science. University of California, Irvine, CA,http://www.ics.uci.edu/mlearn/MLRepository.html .
-
(2001)
UCI Repository of Machine Learning Databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
30
-
-
0036825901
-
Modified support vector machines in financial time series forecasting
-
Tay, F. E. H., Cao, L. J. Modified support vector machines in financial time series forecasting.Neurocomputing 48(10) (2002), 847-861.
-
(2002)
Neurocomputing
, vol.48
, Issue.10
, pp. 847-861
-
-
Tay, F.E.H.1
Cao, L.J.2
-
31
-
-
18544377981
-
Support vector machines with simulated annealing algorithms in electricity load forecasting
-
PAI Ping-feng , HONG Wei-chiang. Support vector machines with simulated annealingalgorithms in electricity load forecasting. Energy Conversion and Management 46(17)(2005), 2669-2688.
-
(2005)
Energy Conversion and Management
, vol.46
, Issue.17
, pp. 2669-2688
-
-
Pai, P.-F.1
Hong, W.-C.2
-
32
-
-
18144394762
-
Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
-
PAI Ping-feng , HONGWei-chiang. Forecasting regional electricity load based on recurrentsupport vector machines with genetic algorithms. Electric Power Systems Research 74(3)(2005), 417-425.
-
(2005)
Electric Power Systems Research
, vol.74
, Issue.3
, pp. 417-425
-
-
Pai, P.-F.1
Hong, W.-C.2
-
33
-
-
0037381038
-
Support vector machines experts for time series forecasting
-
CAO Li-juan. Support vector machines experts for time series forecasting. Neurocomputing51(4) (2003), 321-339.
-
(2003)
Neurocomputing
, vol.51
, Issue.4
, pp. 321-339
-
-
Cao, L.-J.1
-
34
-
-
13544267510
-
Forecasting stock market movement directionwith support vector machine
-
HUANGWei, Nakamori Y,WANG Shou-yang. Forecasting stock market movement directionwith support vector machine. Computers and Operations Research 32(10) (2005),2513-2522.
-
(2005)
Computers and Operations Research
, vol.32
, Issue.10
, pp. 2513-2522
-
-
Huang, W.1
Nakamori, Y.2
Wang, S.Y.3
-
35
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
Frauke Friedrichs, Christian Igel. Evolutionary tuning of multiple SVM parameters.Neurocomputing 64 (2005), 107-117.
-
(2005)
Neurocomputing
, vol.64
, pp. 107-117
-
-
Friedrichs Frauke1
Igel Christian2
|