메뉴 건너뛰기




Volumn 7695, Issue , 2010, Pages

Dimensionality reduction, classification, and spectral mixture analysis using nonnegative underapproximation

Author keywords

Classification; Dimensionality reduction; Hyperspectral images; Nonnegative Matrix Factorization; Spectral mixture analysis; Underapproximation

Indexed keywords

DIMENSIONALITY REDUCTION; HYPER-SPECTRAL IMAGES; NONNEGATIVE MATRIX FACTORIZATION; SPECTRAL MIXTURE ANALYSIS; UNDER-APPROXIMATION;

EID: 77953799944     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.849345     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 1
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee, D. and Seung, H., "Learning the parts of objects by nonnegative matrix factorization", Nature 401, 788-791 (1999).
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 3
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • Boardman, J., "Geometric mixture analysis of imaging spectrometry data", in [Proc. IGARSS 4, Pasadena, Calif., pp. 2369-2371], (1994).
    • (1994) Proc. IGARSS 4, Pasadena, Calif. , pp. 2369-2371
    • Boardman, J.1
  • 4
  • 5
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • Pauca, P., Piper, J., and Plemmons, R., "Nonnegative matrix factorization for spectral data analysis", Linear Algebra and its Applications 406 (1), 29-47 (2006). (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 6
    • 60549111308 scopus 로고    scopus 로고
    • Tensor methods for hyperspectral data analysis: A space object material identification study
    • Zhang, Q., Wang, H., Plemmons, R., and Pauca, P., "Tensor methods for hyperspectral data analysis: a space object material identification study", J. Optical Soc. Amer. A 25 (12), 3001-3012 (2008).
    • (2008) J. Optical Soc. Amer. A , vol.25 , Issue.12 , pp. 3001-3012
    • Zhang, Q.1    Wang, H.2    Plemmons, R.3    Pauca, P.4
  • 7
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • Vavasis, S. A., "On the complexity of nonnegative matrix factorization", SIAM Journal on Optimization 20(3), 1364-1377 (2009).
    • (2009) SIAM Journal on Optimization , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.A.1
  • 10
    • 84900510076 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with sparseness constraints
    • Hoyer, P., "Nonnegative matrix factorization with sparseness constraints", J. Machine Learning Research 5, 1457-1469 (2004).
    • (2004) J. Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 12
    • 34547302100 scopus 로고    scopus 로고
    • Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy
    • Li, H., Adal, C., Wang, W., Emge, D., and Cichocki, A., "Non-negative matrix factorization with orthogonality constraints and its application to raman spectroscopy", The Journal of VLSI Signal Processing 48, 83-97 (2007).
    • (2007) The Journal of VLSI Signal Processing , vol.48 , pp. 83-97
    • Li, H.1    Adal, C.2    Wang, W.3    Emge, D.4    Cichocki, A.5
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Miao, L. and Qi, H., "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization", IEEE Transactions on Geoscience and Remote Sensing 45 (3), 765-777 (2007).
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 14
    • 44949129922 scopus 로고    scopus 로고
    • A full algorithm to compute the constrained positive matrix factorization and its application in unsupervised unmixing of hyperspectral imagery
    • doi:10.1117/12.779444
    • Masalmah, Y. and Veléz-Reyes, M., "A full algorithm to compute the constrained positive matrix factorization and its application in unsupervised unmixing of hyperspectral imagery", in [Proc. SPIE, Vol. 6966; doi:10.1117/12.779444], (2008).
    • (2008) Proc. SPIE , vol.6966
    • Masalmah, Y.1    Veléz-Reyes, M.2
  • 16
    • 0004236492 scopus 로고    scopus 로고
    • [3rd Edition], The Johns Hopkins University Press Baltimore
    • Golub, G. and Van Loan, C., [Matrix Computation, 3rd Edition], The Johns Hopkins University Press Baltimore (1996).
    • (1996) Matrix Computation
    • Golub, G.1    Van Loan, C.2
  • 18
    • 74449083451 scopus 로고    scopus 로고
    • Using underapproximations for sparse nonnegative matrix factorization
    • Gillis, N. and Glineur, F., "Using underapproximations for sparse nonnegative matrix factorization", Pattern Recognition 43(4), 1676-1687 (2010).
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1676-1687
    • Gillis, N.1    Glineur, F.2
  • 23
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Winter, M., "N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data", in [Proc. SPIE Conference on Imaging Spectrometry V], (1999).
    • (1999) Proc. SPIE Conference on Imaging Spectrometry , vol.5
    • Winter, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.