메뉴 건너뛰기




Volumn 22, Issue 1-2, 2010, Pages 17-26

Recognizing household activities from human motion data using active learning and feature selection

Author keywords

Active learning; Activity recognition; Conditional random fields; Feature selection; Support vector machines

Indexed keywords

ACCURACY; ARTICLE; DATA BASE; HOUSEHOLD; LEARNING; MOTION ANALYSIS SYSTEM; PHYSICAL ACTIVITY; SEQUENCE ANALYSIS; TRAINING;

EID: 77953763789     PISSN: 10554181     EISSN: None     Source Type: Journal    
DOI: 10.3233/TAD-2010-0284     Document Type: Article
Times cited : (3)

References (17)
  • 4
  • 5
    • 77953746143 scopus 로고    scopus 로고
    • Probabilistic discovery of time series motifs
    • B. Chiu, E. Keogh and S. Lonardi, Probabilistic discovery of time series motifs, In Proc. ACM KDD, 2003.
    • (2003) Proc. ACM KDD
    • Chiu, B.1    Keogh, E.2    Lonardi, S.3
  • 6
    • 77953730178 scopus 로고    scopus 로고
    • Guide to the CMU Multimodal Activity Database
    • F. Frade et al., Guide to the CMU Multimodal Activity Database. Technical Report RI-08-22, CMU, 2008.
    • (2008) Technical Report RI-08-22, CMU
    • Frade, F.1
  • 7
    • 77953750547 scopus 로고    scopus 로고
    • Kernel conditional random fields: Representation and clique selection
    • J. Lafferty et al., Kernel conditional random fields: representation and clique selection, In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1
  • 8
    • 34548799026 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and T. Weiss, Learning to combine bottom-up and top-down segmentation, In ECCV, 2006.
    • (2006) ECCV
    • Levin, A.1    Weiss, T.2
  • 9
    • 84898848272 scopus 로고
    • On the limited memory model for large scale optimization
    • D. Liu and J. Nocedal, On the limited memory model for large scale optimization, Mathematical Programming B 45(3) (1989).
    • (1989) Mathematical Programming B , vol.45 , pp. 3
    • Liu, D.1    Nocedal, J.2
  • 10
    • 43949136939 scopus 로고    scopus 로고
    • Discovering characteristic actions from onbody sensor data
    • D. Minnen et al., Discovering characteristic actions from onbody sensor data, In ISWC, 2006.
    • (2006) ISWC
    • Minnen, D.1
  • 12
    • 33745893539 scopus 로고    scopus 로고
    • Conditional model for contextual human motion recognition
    • C. Sminchisescu, A. Kanaujia, Z. Li and D. Metaxas, Conditional model for contextual human motion recognition, In ICCV, 2005.
    • (2005) ICCV
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Metaxas, D.4
  • 13
    • 15544364892 scopus 로고    scopus 로고
    • Discovery of timeseries motif from multi-dimensional data based on mdl principle
    • Y. Tanaka, K. Iwamoto and K. Uehara, Discovery of timeseries motif from multi-dimensional data based on mdl principle, Machine Learning 58(2) (2005).
    • (2005) Machine Learning , vol.58 , pp. 2
    • Tanaka, Y.1    Iwamoto, K.2    Uehara, K.3
  • 14
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, Support vector machine active learning with applications to text classification, Journal of Machine Learning Research 2(45C66) (2002).
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.45 C66
    • Tong, S.1    Koller, D.2
  • 15
    • 78751680120 scopus 로고    scopus 로고
    • Toward unsupervised activity discovery using multidimensional motif detection in time series
    • A. Vahdatpour et al., Toward unsupervised activity discovery using multidimensional motif detection in time series, In IJCAI, 2009.
    • (2009) IJCAI
    • Vahdatpour, A.1
  • 16
    • 67349213769 scopus 로고    scopus 로고
    • Feature selection for activity recognition in multi-robot domains
    • D. Vail et al., Feature selection for activity recognition in multi-robot domains, In AAAI, 2008.
    • (2008) AAAI
    • Vail, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.