-
1
-
-
0010635904
-
An evaluation of an algorithm for inductive learning of bayesian belief networks using simulated data sets
-
Seattle, WA: Morgan Kaufmann
-
Aliferis, C., and Cooper, G. (1994). An evaluation of an algorithm for inductive learning of Bayesian belief networks using simulated data sets. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence. Seattle, WA: Morgan Kaufmann, 8–14.
-
(1994)
Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 8-14
-
-
Aliferis, C.1
Cooper, G.2
-
4
-
-
24944438977
-
A bayesian method for the induction of probabilistic networks from data
-
Section on Medical Informatics, Stanford University
-
Cooper, G., and Herskovits, E. (1991). A Bayesian method for the induction of probabilistic networks from data. Technical Report SMI-91-1. Section on Medical Informatics, Stanford University.
-
(1991)
Technical Report SMI-91-1
-
-
Cooper, G.1
Herskovits, E.2
-
5
-
-
34249832377
-
A bayesian method for the induction of probabilistic networks from data
-
Cooper, G., and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
6
-
-
84925587276
-
A comparison of sequential learning methods for incomplete data
-
Department of Statistical Science, University College London
-
Cowell, R., Dawid, A., and Sebastiani, P. (1995). A comparison of sequential learning methods for incomplete data. Technical Report 135, Department of Statistical Science, University College London.
-
(1995)
Technical Report 135
-
-
Cowell, R.1
Dawid, A.2
Sebastiani, P.3
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39, 1–38.
-
(1977)
Journal of the Royal Statistical Society
, vol.39 B
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
8
-
-
0000632751
-
(1994). learning bayesian networks: The combination of knowledge and statistical data
-
Seattle, WA: Morgan Kaufmann
-
Heckerman, D., Geiger, D., and Chickering, D. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence. Seattle, WA: Morgan Kaufmann, 293–301.
-
Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 293-301
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
9
-
-
34249761849
-
Learning bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197–243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
12
-
-
0000086731
-
Influence diagrams
-
R. Howard, and J. Matheson (Eds.), Menlo Park, CA: Strategic Decisions Group
-
Howard, R., and Matheson, J. (1981). Influence diagrams. In R. Howard, and J. Matheson (Eds.), Readings on the Principles and Applications of Decision Analysis, Vol. II. Menlo Park, CA: Strategic Decisions Group, 721–762.
-
(1981)
Readings on the Principles and Applications of Decision Analysis
, vol.2
, pp. 721-762
-
-
Howard, R.1
Matheson, J.2
-
13
-
-
0002327823
-
From influence to relevance to knowledge
-
R.M. Oliver and J.Q. Smith (Eds.), New York: Wiley and Sons
-
Howard, R. (1990). From influence to relevance to knowledge. In R.M. Oliver and J.Q. Smith (Eds.), Influence Diagrams, Belief Nets, and Decision Analysis. New York: Wiley and Sons, 3–23.
-
(1990)
Influence Diagrams, Belief Nets, and Decision Analysis
, pp. 3-23
-
-
Howard, R.1
-
14
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using occam’s window
-
Madigan, D., and Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 1535–1546.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.2
-
15
-
-
0012345425
-
Using influence diagrams to value information and control
-
R.M. Oliver and J.Q. Smith (Eds.), New York: Wiley and Sons
-
Matheson, J. (1990). Using influence diagrams to value information and control. In R.M. Oliver and J.Q. Smith (Eds.), Influence Diagrams, Belief Nets, and Decision Analysis. New York: Wiley and Sons, 25–48.
-
(1990)
Influence Diagrams, Belief Nets, and Decision Analysis
, pp. 25-48
-
-
Matheson, J.1
-
17
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82, 669–710.
-
(1995)
Biometrika
, vol.82
, pp. 669-710
-
-
Pearl, J.1
-
18
-
-
0002838962
-
A theory of inferred causation
-
J. Allen, R. Fikes, and E. Sandewall, (Eds.), New York: Morgan Kaufmann
-
Pearl, J., and Verma, T. (1991). A theory of inferred causation. In J. Allen, R. Fikes, and E. Sandewall, (Eds.), Knowledge Representation and Reasoning: Proceedings of the Second International Conference. New York: Morgan Kaufmann, 441–452.
-
(1991)
Knowledge Representation and Reasoning: Proceedings of the Second International Conference
, pp. 441-452
-
-
Pearl, J.1
Verma, T.2
-
19
-
-
0002531157
-
Bayesian inference for causal effects: The role of randomization
-
Rubin, D. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34–58.
-
(1978)
Annals of Statistics
, vol.6
, pp. 34-58
-
-
Rubin, D.1
-
20
-
-
0022818911
-
Evaluating influence diagrams
-
Shachter, R. (1986). Evaluating influence diagrams. Operations Research, 34, 871–882.
-
(1986)
Operations Research
, vol.34
, pp. 871-882
-
-
Shachter, R.1
-
21
-
-
84972488038
-
Bayesian analysis in expert systems
-
Spiegelhalter, D., Dawid, A., Lauritzen, S., and Cowell, R. (1993). Bayesian analysis in expert systems. Statistical Science, 8, 219–282.
-
(1993)
Statistical Science
, vol.8
, pp. 219-282
-
-
Spiegelhalter, D.1
Dawid, A.2
Lauritzen, S.3
Cowell, R.4
-
22
-
-
84986980101
-
Sequential updating of conditional probabilities on directed graphical structures
-
Spiegelhalter, D., and Lauritzen, S. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks, 20, 579–605.
-
(1990)
Networks
, vol.20
, pp. 579-605
-
-
Spiegelhalter, D.1
Lauritzen, S.2
-
23
-
-
0003614273
-
-
New York: Springer-Verlag
-
Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Prediction, and Search. New York: Springer-Verlag.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
24
-
-
0000486814
-
Updating a diagnostic system using unconfirmed cases
-
Titterington, D. (1976). Updating a diagnostic system using unconfirmed cases. Applied Statistics, 25, 238–247.
-
(1976)
Applied Statistics
, vol.25
, pp. 238-247
-
-
Titterington, D.1
|