메뉴 건너뛰기




Volumn , Issue , 2007, Pages 202-220

A bayesian approach to learning causal networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77953694484     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9780511611308.012     Document Type: Chapter
Times cited : (9)

References (26)
  • 1
    • 0010635904 scopus 로고
    • An evaluation of an algorithm for inductive learning of bayesian belief networks using simulated data sets
    • Seattle, WA: Morgan Kaufmann
    • Aliferis, C., and Cooper, G. (1994). An evaluation of an algorithm for inductive learning of Bayesian belief networks using simulated data sets. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence. Seattle, WA: Morgan Kaufmann, 8–14.
    • (1994) Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence , pp. 8-14
    • Aliferis, C.1    Cooper, G.2
  • 4
    • 24944438977 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • Section on Medical Informatics, Stanford University
    • Cooper, G., and Herskovits, E. (1991). A Bayesian method for the induction of probabilistic networks from data. Technical Report SMI-91-1. Section on Medical Informatics, Stanford University.
    • (1991) Technical Report SMI-91-1
    • Cooper, G.1    Herskovits, E.2
  • 5
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • Cooper, G., and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 6
    • 84925587276 scopus 로고
    • A comparison of sequential learning methods for incomplete data
    • Department of Statistical Science, University College London
    • Cowell, R., Dawid, A., and Sebastiani, P. (1995). A comparison of sequential learning methods for incomplete data. Technical Report 135, Department of Statistical Science, University College London.
    • (1995) Technical Report 135
    • Cowell, R.1    Dawid, A.2    Sebastiani, P.3
  • 9
    • 34249761849 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197–243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 12
    • 0000086731 scopus 로고
    • Influence diagrams
    • R. Howard, and J. Matheson (Eds.), Menlo Park, CA: Strategic Decisions Group
    • Howard, R., and Matheson, J. (1981). Influence diagrams. In R. Howard, and J. Matheson (Eds.), Readings on the Principles and Applications of Decision Analysis, Vol. II. Menlo Park, CA: Strategic Decisions Group, 721–762.
    • (1981) Readings on the Principles and Applications of Decision Analysis , vol.2 , pp. 721-762
    • Howard, R.1    Matheson, J.2
  • 13
    • 0002327823 scopus 로고
    • From influence to relevance to knowledge
    • R.M. Oliver and J.Q. Smith (Eds.), New York: Wiley and Sons
    • Howard, R. (1990). From influence to relevance to knowledge. In R.M. Oliver and J.Q. Smith (Eds.), Influence Diagrams, Belief Nets, and Decision Analysis. New York: Wiley and Sons, 3–23.
    • (1990) Influence Diagrams, Belief Nets, and Decision Analysis , pp. 3-23
    • Howard, R.1
  • 14
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using occam’s window
    • Madigan, D., and Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 1535–1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 15
    • 0012345425 scopus 로고
    • Using influence diagrams to value information and control
    • R.M. Oliver and J.Q. Smith (Eds.), New York: Wiley and Sons
    • Matheson, J. (1990). Using influence diagrams to value information and control. In R.M. Oliver and J.Q. Smith (Eds.), Influence Diagrams, Belief Nets, and Decision Analysis. New York: Wiley and Sons, 25–48.
    • (1990) Influence Diagrams, Belief Nets, and Decision Analysis , pp. 25-48
    • Matheson, J.1
  • 17
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82, 669–710.
    • (1995) Biometrika , vol.82 , pp. 669-710
    • Pearl, J.1
  • 19
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin, D. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34–58.
    • (1978) Annals of Statistics , vol.6 , pp. 34-58
    • Rubin, D.1
  • 20
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • Shachter, R. (1986). Evaluating influence diagrams. Operations Research, 34, 871–882.
    • (1986) Operations Research , vol.34 , pp. 871-882
    • Shachter, R.1
  • 22
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter, D., and Lauritzen, S. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks, 20, 579–605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.1    Lauritzen, S.2
  • 24
    • 0000486814 scopus 로고
    • Updating a diagnostic system using unconfirmed cases
    • Titterington, D. (1976). Updating a diagnostic system using unconfirmed cases. Applied Statistics, 25, 238–247.
    • (1976) Applied Statistics , vol.25 , pp. 238-247
    • Titterington, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.