메뉴 건너뛰기




Volumn 3, Issue 3, 2009, Pages 457-463

Delay-dependent approach to robust stability for uncertain discretestochastic recurrent neural networks with interval time-varying delays

Author keywords

Discrete stochastic recurrent neural networks; Interval time varying delays; Linear matrix inequality; Robuststability; Uncertainty

Indexed keywords

ACTIVATION FUNCTIONS; DELAY DEPENDENT STABILITY CRITERION; DELAY-DEPENDENT; INTERVAL TIME; INTERVAL TIME-VARYING DELAYS; LIPSCHITZ CONTINUOUS; LOWER BOUNDS; LYAPUNOV; MATRIX; PARAMETER UNCERTAINTY; ROBUST STABILITY; STATE EQUATIONS; STOCHASTIC RECURRENT NEURAL NETWORK; SUFFICIENT CONDITIONS; UPPER BOUND; VARYING DELAY;

EID: 77953651481     PISSN: 1881803X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (25)

References (18)
  • 1
    • 0029345226 scopus 로고
    • New conditions for global stability of neural networks with applicationsto linear and quadratic programming problems
    • M. Forti, and A. Tesi, New conditions for global stability of neuralnetworks with applications to linear and quadratic programming problems, IEEETrans. Circuits & Systems I Fund. Theory Applications, Vol. 42, No. 7, pp.354-366, 1995.
    • (1995) IEEE Trans. Circuits & Systems I Fund. Theory Applications , vol.42 , Issue.7 , pp. 354-366
    • Forti, M.1    Tesi, A.2
  • 2
    • 48249108283 scopus 로고    scopus 로고
    • A generalized LMI-based approach to the global asymptotic stability ofdiscrete-time delayed recurrent neural networks
    • Q. Zhang, X. Wei and J. Xu, A generalized LMI-based approach to theglobal asymptotic stability of discrete-time delayed recurrent neural networks,Int. J. Innovative Computing, Information & Control, Vol. 4, No. 6, pp.1393-1399, 2008.
    • (2008) Int. J. Innovative Computing, Information & Control , vol.4 , Issue.6 , pp. 1393-1399
    • Zhang, Q.1    Wei, X.2    Xu, J.3
  • 3
    • 63649086505 scopus 로고    scopus 로고
    • A delay-dependent approach to stability for static recurrent neuralnetworks with mixed time-varying delays
    • C. Y. Lu, T. J. Su, Y. H. Su and S. C. Huang, A delay-dependent approachto stability for static recurrent neural networks with mixed time-varyingdelays, Int. J. Innovative Computing, Information & Control, Vol. 4, No. 7,pp. 1661-1672, 2008.
    • (2008) Int. J. Innovative Computing, Information & Control , vol.4 , Issue.7 , pp. 1661-1672
    • Lu, C.Y.1    Su, T.J.2    Su, Y.H.3    Huang, S.C.4
  • 4
    • 13444256385 scopus 로고    scopus 로고
    • A general framework for global asymptotic stability analysis of delayedneural networks based on LMI approach
    • DOI 10.1016/j.chaos.2004.09.063, PII S0960077904006241
    • J. Cao, and D. W. C. Ho, A general framework for global asymptoticstability analysis of delayed neural networks based on LMI approach, Chaos,Solitons & Fractals, Vol. 24, No. 5, pp. 1317-1329, 2005. (Pubitemid40206058)
    • (2005) Chaos, Solitons and Fractals , vol.24 , Issue.5 , pp. 1317-1329
    • Cao, J.1    Ho, D.W.C.2
  • 5
    • 0034233270 scopus 로고    scopus 로고
    • Results concerning the absolute stability of delayed neural networks
    • M. Joy, Results concerning the absolute stability of delayed neuralnetworks, Neural Networks, Vol. 13, No. 6, pp. 613-616, 2000.
    • (2000) Neural Networks , vol.13 , Issue.6 , pp. 613-616
    • Joy, M.1
  • 6
    • 56949099737 scopus 로고    scopus 로고
    • New robust stability of cellular neural networks with time-varyingdiscrete and distributed delays
    • Y. Chen, and W. Su, New robust stability of cellular neural networks withtime-varying discrete and distributed delays, Int. J. Innovative Computing,Information & Control, Vol. 3, no. 6(B), pp. 1549-1556, 2007.
    • (2007) Int. J. Innovative Computing, Information & Control , vol.3 B , Issue.6 , pp. 1549-1556
    • Chen, Y.1    Su, W.2
  • 7
    • 1942443174 scopus 로고    scopus 로고
    • Global robust exponential stability analysis for interval recurrentneural networks
    • S. Xu, J. Lam and D. W. C. Ho, Global robust exponential stabilityanalysis for interval recurrent neural networks, Physics letters A, Vol. 325,No. 2, pp. 124-133, 2004.
    • (2004) Physics Letters A , vol.325 , Issue.2 , pp. 124-133
    • Xu, S.1    Lam, J.2    Ho, D.W.C.3
  • 8
    • 14644434391 scopus 로고    scopus 로고
    • Global asymptotic and robust stability of recurrent neural networks withtime delays
    • DOI 10.1109/TCSI.2004.841574
    • J. Cao, and J. Wang, Global asymptotic and robust stability of recurrentneural networks with time delays, IEEE Trans. Circuits and Systems-I: RegularPapers, Vol. 52, No. 2, pp. 417-426, 2005. (Pubitemid 40319475)
    • (2005) IEEE Transactions on Circuits and Systems I: Regular Papers , vol.52 , Issue.2 , pp. 417-426
    • Cao, J.1    Wang, J.2
  • 9
    • 33644951682 scopus 로고    scopus 로고
    • Novel results concerning global robust stability of delayed neuralnetworks
    • J. Cao, H. X. Li and L. Han, Novel results concerning global robuststability of delayed neural networks, Nonlinear Analysis: Real WorldApplications, Vol. 7, No. 3, pp. 458-469, 2006.
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , Issue.3 , pp. 458-469
    • Cao, J.1    Li, H.X.2    Han, L.3
  • 10
    • 33646499073 scopus 로고    scopus 로고
    • Robust stability analysis of generalized neural networks with discreteand distributed time delays
    • DOI 10.1016/j.chaos.2005.08.166, PII S0960077905007988
    • Z. Wang, H. Shu, Y. Liu, D. W. C. Ho and X. Liu, Robust stabilityanalysis of generalized neural networks with discrete and distributed timedelays, Chaos, Solitons and Fractals, Vol. 30, No. 4, pp. 886-896, 2006.(Pubitemid 43913472)
    • (2006) Chaos, Solitons and Fractals , vol.30 , Issue.4 , pp. 886-896
    • Wang, Z.1    Shu, H.2    Liu, Y.3    Ho, D.W.C.4    Liu, X.5
  • 12
    • 31344444201 scopus 로고    scopus 로고
    • Global robust stability analysis of neural networks with multiple timedelays
    • DOI 10.1109/TCSI.2005.855724
    • N. Ozcan, and S. Arik, Global robust stability analysis of neuralnetworks with multiple time delays, IEEE Trans. Circuits & Systems-I:Regular papers, Vol. 53, No. 1, pp. 166-176, 2006. (Pubitemid 43141939)
    • (2006) IEEE Transactions on Circuits and Systems I: Regular Papers , vol.53 , Issue.1 , pp. 166-176
    • Ozcan, N.1    Arik, S.2
  • 13
    • 33646890454 scopus 로고    scopus 로고
    • LMI-based criteria for globally robust stability of delayedCohen- Grossberg neural networks
    • DOI 10.1049/ip-cta:20050197
    • W. Wang, and J. Cao, LMI-based criteria for globally robust stability ofdelayed Cohen-Grossberg neural networks, IEE Proc.-Control Theory Appl., Vol.153, No. 4, pp. 397-402, 2006. (Pubitemid 43781892)
    • (2006) IEE Proceedings: Control Theory and Applications , vol.153 , Issue.4 , pp. 397-402
    • Wang, W.1    Cao, J.2
  • 14
    • 34047244923 scopus 로고    scopus 로고
    • Novel robust stability criteria for uncertain stochastic hopfield neuralnetworks with time-varying delays
    • J. H. Zhang, P. Shi, and J. Q. Qiu, Novel robust stability criteria foruncertain stochastic Hopfield neural networks with time-varying delays,Nonlinear Analysis: Real World Applications, Vol. 8, No. 4, pp. 1349-1357, 2007.
    • (2007) Nonlinear Analysis: Real World Applications , vol.8 , Issue.4 , pp. 1349-1357
    • Zhang, J.H.1    Shi, P.2    Qiu, J.Q.3
  • 15
    • 33750480558 scopus 로고    scopus 로고
    • Robust stability and robust periodicity of delayed recurrent neuralnetworks with noise disturbance
    • DOI 10.1109/TCSI.2006.883159
    • C. Li, and X. Liao, Robust stability and robust periodicity of delayedrecurrent neural networks with nose disturbance, IEEE Trans. Circuits &Systems-I: Regular papers, Vol. 53, pp. 2265-2273, 2006. (Pubitemid 44644159)
    • (2006) IEEE Transactions on Circuits and Systems I: Regular Papers , vol.53 , Issue.10 , pp. 2265-2273
    • Li, C.1    Liao, X.2
  • 16
    • 38649120898 scopus 로고    scopus 로고
    • Robust stability of discrete-time stochastic neural networks withtime-varying delays
    • DOI 10.1016/j.neucom.2007.03.008, PII S0925231207001002
    • Y. Liu, Z. Wang and X. Liu, Robust stability of discrete-time stochasticneural networks with time-varying delays, Neurocomputing, Vol. 71, no. 4-6, pp.823-833, 2008. (Pubitemid 351168431)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 823-833
    • Liu, Y.1    Wang, Z.2    Liu, X.3
  • 17
    • 37549045167 scopus 로고    scopus 로고
    • A delay-range-dependent approach to global robust stability fordiscrete-time uncertain recurrent neural networks with interval time-varyingdelay
    • C. Y. Lu, A delay-range-dependent approach to global robust stability fordiscrete-time uncertain recurrent neural networks with interval time-varyingdelay, J. Systems Control engineering, Vol. 221, No. 8, pp. 1123-1132, 2007.
    • (2007) J. Systems Control Engineering , vol.221 , Issue.8 , pp. 1123-1132
    • Lu, C.Y.1
  • 18
    • 34547402018 scopus 로고    scopus 로고
    • A delay-dependent LMI approach to dynamics analysis of discrete-timerecurrent neural networks with time-varying delays
    • Q. Song, and Z. Wang, A delay-dependent LMI approach to dynamics analysisof discrete-time recurrent neural networks with time-varying delays, PhysicsLetters A, Vol. 368, no. 1-2, pp. 134-145, 2007.
    • (2007) Physics Letters A , vol.368 , Issue.1-2 , pp. 134-145
    • Song, Q.1    Wang, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.