메뉴 건너뛰기




Volumn 11, Issue 4, 2010, Pages 338-350

Support vector regression of membership functions and belief functions - Application for pattern recognition

Author keywords

Belief functions; Membership functions; Regression; SVM; SVR

Indexed keywords

BELIEF FUNCTION; BELIEF FUNCTIONS; CLASSICAL APPROACH; CLASSIFICATION RESULTS; CLASSIFICATION TASKS; CONVEX PROBLEMS; FUZZY SVM; K-NEAREST NEIGHBORS; LEARNING DATA; STATISTICAL LEARNING THEORY; SUPPORT VECTOR REGRESSIONS; THEORY OF BELIEF FUNCTIONS; THEORY OF FUZZY SETS; UNCERTAIN DATAS;

EID: 77953616673     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2009.12.007     Document Type: Article
Times cited : (22)

References (51)
  • 2
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • Zadeh L. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978) 3-28
    • (1978) Fuzzy Sets and Systems , vol.1 , pp. 3-28
    • Zadeh, L.1
  • 4
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • Dempster A. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 83 (1967) 325-339
    • (1967) Annals of Mathematical Statistics , vol.83 , pp. 325-339
    • Dempster, A.1
  • 9
    • 0035506139 scopus 로고    scopus 로고
    • Using the transferable belief model and a qualitative possibility theory approach on an illustrative example: the assessment of the value of a candidate
    • Dubois D., Grabisch M., Prade H., and Smets P. Using the transferable belief model and a qualitative possibility theory approach on an illustrative example: the assessment of the value of a candidate. International Journal of Intelligence Systems 16 (2001) 1245-1272
    • (2001) International Journal of Intelligence Systems , vol.16 , pp. 1245-1272
    • Dubois, D.1    Grabisch, M.2    Prade, H.3    Smets, P.4
  • 13
    • 0028754808 scopus 로고
    • Fuzzy regression analysis by fuzzy neural networks and its application
    • Orlando, USA
    • A. Miyazaki, K. Kwon, H. Ishibuchi, H. Tanaka, Fuzzy regression analysis by fuzzy neural networks and its application, in: Conference on Fuzzy Systems, Orlando, USA, vol.1, 1994, pp. 52-57.
    • (1994) Conference on Fuzzy Systems , vol.1 , pp. 52-57
    • Miyazaki, A.1    Kwon, K.2    Ishibuchi, H.3    Tanaka, H.4
  • 14
    • 0037119256 scopus 로고    scopus 로고
    • A new approach to fuzzy regression models with application to business cycle analysis
    • Wu B., and Tseng N.-F. A new approach to fuzzy regression models with application to business cycle analysis. Fuzzy Sets and Systems 130 (2002) 33-42
    • (2002) Fuzzy Sets and Systems , vol.130 , pp. 33-42
    • Wu, B.1    Tseng, N.-F.2
  • 15
    • 0242490050 scopus 로고    scopus 로고
    • Nonparametric regression analysis of uncertain and imprecise data using belief functions
    • Petit-Renaud S., and Denœux T. Nonparametric regression analysis of uncertain and imprecise data using belief functions. International Journal of Approximate Reasoning 35 (2004) 1-28
    • (2004) International Journal of Approximate Reasoning , vol.35 , pp. 1-28
    • Petit-Renaud, S.1    Denœux, T.2
  • 17
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • University of Southampton
    • S. Gunn, Support vector machines for classification and regression, ISIS Technical Report, University of Southampton, 1998.
    • (1998) ISIS Technical Report
    • Gunn, S.1
  • 18
    • 0012045480 scopus 로고
    • Fuzzy neural networks: a survey
    • Buckley J., and Hayashi Y. Fuzzy neural networks: a survey. Fuzzy Sets and Systems 66 1 (1994) 1-13
    • (1994) Fuzzy Sets and Systems , vol.66 , Issue.1 , pp. 1-13
    • Buckley, J.1    Hayashi, Y.2
  • 19
    • 0000941048 scopus 로고
    • A learning scheme for a fuzzy k-nn rule
    • Jozwik A. A learning scheme for a fuzzy k-nn rule. Pattern Recognition Letters 1 (1983) 287-289
    • (1983) Pattern Recognition Letters , vol.1 , pp. 287-289
    • Jozwik, A.1
  • 23
    • 0034505375 scopus 로고    scopus 로고
    • Induction of decision trees from partially classified data using belief function
    • Nashville, USA
    • T. Denœux, M.S. Bjanger, Induction of decision trees from partially classified data using belief function, in: Proceedings of SMC'2000, Nashville, USA, 2000, pp. 2923-2928.
    • (2000) Proceedings of SMC , pp. 2923-2928
    • Denœux, T.1    Bjanger, M.S.2
  • 24
    • 0013322395 scopus 로고    scopus 로고
    • Handling uncertain labels in multiclass problems using belief decision trees
    • Annecy, France
    • P. Vannoorenberghe, T. Denœux, Handling uncertain labels in multiclass problems using belief decision trees, in: IPMU'2002, Annecy, France, vol. 3, 2002, pp. 1919-1926.
    • (2002) IPMU , vol.3 , pp. 1919-1926
    • Vannoorenberghe, P.1    Denœux, T.2
  • 25
    • 77953614813 scopus 로고    scopus 로고
    • A. Martin, C. Osswald, Experts fusion and multilayer perceptron based on belief learning for sonar images classification, in: ICTTA, Damascus, Syria, 2008, pp. 7-11.
    • A. Martin, C. Osswald, Experts fusion and multilayer perceptron based on belief learning for sonar images classification, in: ICTTA, Damascus, Syria, 2008, pp. 7-11.
  • 26
    • 22344440204 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern recognition and data mining
    • Han-Pang H., and Yi-Hung L. Fuzzy support vector machines for pattern recognition and data mining. International Journal of Fuzzy Systems 14 3 (2002) 25-28
    • (2002) International Journal of Fuzzy Systems , vol.14 , Issue.3 , pp. 25-28
    • Han-Pang, H.1    Yi-Hung, L.2
  • 29
    • 0038355084 scopus 로고    scopus 로고
    • Fuzzy least squares support vector machines for multiclass problems
    • Tsujinishi D., and Abe S. Fuzzy least squares support vector machines for multiclass problems. Neural Networks 16 (2003) 785-792
    • (2003) Neural Networks , vol.16 , pp. 785-792
    • Tsujinishi, D.1    Abe, S.2
  • 30
    • 0042591514 scopus 로고    scopus 로고
    • Support vector fuzzy regression machines
    • Hong D., and Hwang C. Support vector fuzzy regression machines. Fuzzy Sets and Systems 138 (2003) 271-281
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 271-281
    • Hong, D.1    Hwang, C.2
  • 31
    • 33846058836 scopus 로고    scopus 로고
    • Pairwise classifier combination using belief functions
    • Quost B., Denœux T., and Masson M. Pairwise classifier combination using belief functions. Pattern Recognition Letters 28 (2007) 644-653
    • (2007) Pattern Recognition Letters , vol.28 , pp. 644-653
    • Quost, B.1    Denœux, T.2    Masson, M.3
  • 32
    • 50149116572 scopus 로고    scopus 로고
    • Fusion of one-class classifier in the belief function framework
    • Québec, Canada, July
    • A. Aregui, T. Denœux, Fusion of one-class classifier in the belief function framework, in: International Conference on Information Fusion, Québec, Canada, July 2007.
    • (2007) International Conference on Information Fusion
    • Aregui, A.1    Denœux, T.2
  • 33
    • 56749148308 scopus 로고    scopus 로고
    • Decision support with belief functions theory for seabed characterization
    • Cologne, Germany, July
    • A. Martin, I. Quidu, Decision support with belief functions theory for seabed characterization, in: International Conference on Information Fusion, Cologne, Germany, July 2008.
    • (2008) International Conference on Information Fusion
    • Martin, A.1    Quidu, I.2
  • 36
    • 0002570904 scopus 로고
    • Constructing the pignistic probability function in a context of uncertainty
    • Smets P. Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence 5 (1990) 29-39
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 29-39
    • Smets, P.1
  • 37
    • 0035473802 scopus 로고    scopus 로고
    • Situation assessment based on spatially ambiguous multisensor measurements
    • Appriou A. Situation assessment based on spatially ambiguous multisensor measurements. International Journal of Intelligent Systems 16 10 (2001) 1135-1156
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.10 , pp. 1135-1156
    • Appriou, A.1
  • 38
    • 77953621082 scopus 로고    scopus 로고
    • F. Pérez-Cruz, G. Camps, E. Soria, J. Pérez, A. Figueiras-Vidal, A. Artés-Rodriguez, Multi-dimensional function approximation and regression estimation, in: International Conference on Artificial Neural Networks, Madrid, Espagne
    • F. Pérez-Cruz, G. Camps, E. Soria, J. Pérez, A. Figueiras-Vidal, A. Artés-Rodriguez, Multi-dimensional function approximation and regression estimation, in: International Conference on Artificial Neural Networks, Madrid, Espagne.
  • 41
    • 77953612210 scopus 로고    scopus 로고
    • Knowledge discovery on database for seabed characterization
    • Agadir, Morocco
    • H. Laanaya, A. Martin, D. Aboutajdine, A. Khenchaf, Knowledge discovery on database for seabed characterization, in: MCSEAI 2006, Agadir, Morocco.
    • (2006) MCSEAI
    • Laanaya, H.1    Martin, A.2    Aboutajdine, D.3    Khenchaf, A.4
  • 42
    • 0031334889 scopus 로고    scopus 로고
    • Improved training algorithm for support vector machines
    • E. Osuna, R. Freund, F. Girosi, Improved training algorithm for support vector machines, in: NNSP'97, 1997, pp. 24-26.
    • (1997) NNSP'97 , pp. 24-26
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 43
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • MSR-TR-98-14, 1998
    • J. Platt, Sequential minimal optimization: a fast algorithm for training support vector machines, Microsoft Research Technical Report MSR-TR-98-14, 1998.
    • Microsoft Research Technical Report
    • Platt, J.1
  • 44
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin C.-J. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks 12 (2001) 1288-1298
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.-J.1
  • 45
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Lin C.-J. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks 13 (2002) 248-250
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 248-250
    • Lin, C.-J.1
  • 48
    • 33746852477 scopus 로고    scopus 로고
    • Evaluation for uncertain image classification and segmentation
    • Martin A., Laanaya H., and Arnold-Bos A. Evaluation for uncertain image classification and segmentation. Pattern Recognition 39 (2006) 1987-1995
    • (2006) Pattern Recognition , vol.39 , pp. 1987-1995
    • Martin, A.1    Laanaya, H.2    Arnold-Bos, A.3
  • 49
    • 77953614248 scopus 로고    scopus 로고
    • A. Martin, G. Sévellec, I. Leblond, Characteristics vs decision fusion for sea-bottom characterization, Colloque Caractérisation in-situ des fonds marins, Brest, France
    • A. Martin, G. Sévellec, I. Leblond, Characteristics vs decision fusion for sea-bottom characterization, Colloque Caractérisation in-situ des fonds marins, Brest, France.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.