메뉴 건너뛰기




Volumn , Issue , 2008, Pages 45-64

Principal direction divisive partitioning with kernels and k-means steering

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77953615023     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-84800-046-9_3     Document Type: Chapter
Times cited : (9)

References (36)
  • 2
    • 0029214082 scopus 로고
    • Spectral partitioning: The more eigenvectors, the better
    • ACM Press
    • [AY95] C. J. Alpert and S.-Z. Yao. Spectral partitioning: the more eigenvectors, the better. In Proc. 32nd ACM/IEEE Design Automation Conf., pages 195-200. ACM Press, 1995. Available from World Wide Web: http://doi.acm.org/10. 1145/217474.217529.
    • (1995) Proc. 32nd ACM/IEEE Design Automation Conf. , pp. 195-200
    • Alpert, C.J.1    Yao, S.-Z.2
  • 3
    • 0002741413 scopus 로고
    • Large scale singular value decomposition
    • [Ber92] M. W. Berry. Large scale singular value decomposition. Int'l. J. Supercomp. Appl., 6:13-49, 1992.
    • (1992) Int'l. J. Supercomp. Appl. , vol.6 , pp. 13-49
    • Berry, M.W.1
  • 4
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, Berlin
    • [Ber06] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 25-72. Springer, Berlin, 2006.
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering , pp. 25-72
    • Berkhin, P.1
  • 7
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • [Bol98] D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 8
    • 33646142578 scopus 로고    scopus 로고
    • A scalable hierarchical algorithm for unsupervised clustering
    • R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Kluwer Academic Publishers, Norwell, MA
    • [Bol01] D. Boley. A scalable hierarchical algorithm for unsupervised clustering. In R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, Norwell, MA, 2001.
    • (2001) Data Mining for Scientific and Engineering Applications
    • Boley, D.1
  • 11
    • 12244256379 scopus 로고    scopus 로고
    • Kernel k-means: Spectral clustering and normalized cuts
    • ACM Press, New York
    • [DGK04] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts. In Proc. 10th ACM SIGKDD, pages 551-556, ACM Press, New York, 2004.
    • (2004) Proc. 10th ACM SIGKDD , pp. 551-556
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 12
    • 0015661138 scopus 로고
    • Lower bounds for the partitioning of graphs
    • [DH73] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM J. Res. Develop., 17:420-425, 1973.
    • (1973) IBM J. Res. Develop. , vol.17 , pp. 420-425
    • Donath, W.E.1    Hoffman, A.J.2
  • 13
    • 7444219584 scopus 로고    scopus 로고
    • Cluster structure of k-means clustering via principal component analysis
    • [DH04] C. Ding and X. He. Cluster structure of k-means clustering via principal component analysis. In PAKDD, pages 414-418, 2004. Available from World Wide Web: http://springerlink.metapress.com/openurl.asp? genre=article&issn=0302-9743&volume=3056&spage=414.
    • (2004) PAKDD , pp. 414-418
    • Ding, C.1    He, X.2
  • 14
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • ACM Press, New York
    • [Dhi01] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proc. 7th ACM SIGKDD, pages 269-274, ACM Press, New York, 2001.
    • (2001) Proc. 7th ACM SIGKDD , pp. 269-274
    • Dhillon, I.S.1
  • 16
    • 0000063845 scopus 로고
    • An improved spectral graph partitioning algorithm for mapping parallel computations
    • [HL95] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16(2):452-469, 1995. Available from World Wide Web: citeseer.nj.nec.com/ hendrickson95improved.html.
    • (1995) SIAM J. Sci. Comput. , vol.16 , Issue.2 , pp. 452-469
    • Hendrickson, B.1    Leland, R.2
  • 18
    • 0036647190 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm: Analysis and implementation
    • [KMN+02] T. Kanungo, D. M. Mount, N. S. Netanyahu, D. Platko, and A. Y. Wu. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. PAMI, 24(7):881-892, 2002.
    • (2002) IEEE Trans. PAMI , vol.24 , Issue.7 , pp. 881-892
    • Kanungo, T.1    Mount, D.M.2    Netanyahu, N.S.3    Platko, D.4    Wu, A.Y.5
  • 20
    • 84892096824 scopus 로고    scopus 로고
    • PCA and kernel PCA using polynomial filtering: A case study on face recognition
    • [KS05] E. Kokiopoulou and Y. Saad. PCA and kernel PCA using polynomial filtering: a case study on face recognition. In SIAM Conf. on Data Mining, 2005.
    • (2005) SIAM Conf. on Data Mining
    • Kokiopoulou, E.1    Saad, Y.2
  • 22
    • 34748835594 scopus 로고    scopus 로고
    • Clustering very large datasets with PDDP
    • J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, New York
    • [LB06] D. Littau and D. Boley. Clustering very large datasets with PDDP. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 99-126. Springer, New York, 2006.
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering , pp. 99-126
    • Littau, D.1    Boley, D.2
  • 23
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • [Llo82] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory, 28:129-137, 1982.
    • (1982) IEEE Trans. Information Theory , vol.28 , pp. 129-137
    • Lloyd, S.P.1
  • 25
    • 45549117987 scopus 로고
    • Term weighting approaches in automatic text retrieval
    • [SB88] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Information Processing and Management, 24(5):513-523, 1988.
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 27
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • [SEKX98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2):169-194, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 28
    • 2442439674 scopus 로고    scopus 로고
    • A comparison of document clustering techniques
    • Boston, MA
    • [SKK00] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In 6th ACM SIGKDD, World Text Mining Conference, Boston, MA, 2000. Available from World Wide Web: citeseer.nj.nec.com/ steinbach00comparison. html.
    • (2000) 6th ACM SIGKDD, World Text Mining Conference
    • Steinbach, M.1    Karypis, G.2    Kumar, V.3
  • 30
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • [SSM98] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 31
    • 23944477313 scopus 로고    scopus 로고
    • A parallel hybrid Web document clustering algorithm and its performance study
    • [XZ04] S. Xu and J. Zhang. A parallel hybrid Web document clustering algorithm and its performance study. J. Supercomputing, 30(2):117-131, 2004.
    • (2004) J. Supercomputing , vol.30 , Issue.2 , pp. 117-131
    • Xu, S.1    Zhang, J.2
  • 33
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • [ZC03] D. Q. Zhang and S. C. Chen. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Processing Letters, 18(3):155-162, 2003.
    • (2003) Neural Processing Letters , vol.18 , Issue.3 , pp. 155-162
    • Zhang, D.Q.1    Chen, S.C.2
  • 35
    • 84891988635 scopus 로고    scopus 로고
    • TMG: A MATLAB toolbox for generating term-document matrices from text collections
    • J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, New York
    • [ZG06] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB toolbox for generating term-document matrices from text collections. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 187-210. Springer, New York, 2006.
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering , pp. 187-210
    • Zeimpekis, D.1    Gallopoulos, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.