-
2
-
-
0029214082
-
Spectral partitioning: The more eigenvectors, the better
-
ACM Press
-
[AY95] C. J. Alpert and S.-Z. Yao. Spectral partitioning: the more eigenvectors, the better. In Proc. 32nd ACM/IEEE Design Automation Conf., pages 195-200. ACM Press, 1995. Available from World Wide Web: http://doi.acm.org/10. 1145/217474.217529.
-
(1995)
Proc. 32nd ACM/IEEE Design Automation Conf.
, pp. 195-200
-
-
Alpert, C.J.1
Yao, S.-Z.2
-
3
-
-
0002741413
-
Large scale singular value decomposition
-
[Ber92] M. W. Berry. Large scale singular value decomposition. Int'l. J. Supercomp. Appl., 6:13-49, 1992.
-
(1992)
Int'l. J. Supercomp. Appl.
, vol.6
, pp. 13-49
-
-
Berry, M.W.1
-
4
-
-
84892062680
-
A survey of clustering data mining techniques
-
J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, Berlin
-
[Ber06] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 25-72. Springer, Berlin, 2006.
-
(2006)
Grouping Multidimensional Data: Recent Advances in Clustering
, pp. 25-72
-
-
Berkhin, P.1
-
5
-
-
84947205653
-
When is "nearest neighbor" meaningful?
-
Sprnger, London
-
[BGRS99] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is "nearest neighbor" meaningful? In Lecture Notes in Computer Science, volume 1540, pages 217-235. Sprnger, London, 1999.
-
(1999)
Lecture Notes in Computer Science
, vol.1540
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
6
-
-
0001089823
-
Support vector clustering
-
[BHHSV01] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering. Machine Learning Research, 2:125-137, 2001.
-
(2001)
Machine Learning Research
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Vapnik, V.4
-
7
-
-
22644451496
-
Principal direction divisive partitioning
-
[Bol98] D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.4
, pp. 325-344
-
-
Boley, D.1
-
8
-
-
33646142578
-
A scalable hierarchical algorithm for unsupervised clustering
-
R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Kluwer Academic Publishers, Norwell, MA
-
[Bol01] D. Boley. A scalable hierarchical algorithm for unsupervised clustering. In R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, Norwell, MA, 2001.
-
(2001)
Data Mining for Scientific and Engineering Applications
-
-
Boley, D.1
-
11
-
-
12244256379
-
Kernel k-means: Spectral clustering and normalized cuts
-
ACM Press, New York
-
[DGK04] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts. In Proc. 10th ACM SIGKDD, pages 551-556, ACM Press, New York, 2004.
-
(2004)
Proc. 10th ACM SIGKDD
, pp. 551-556
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
12
-
-
0015661138
-
Lower bounds for the partitioning of graphs
-
[DH73] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM J. Res. Develop., 17:420-425, 1973.
-
(1973)
IBM J. Res. Develop.
, vol.17
, pp. 420-425
-
-
Donath, W.E.1
Hoffman, A.J.2
-
13
-
-
7444219584
-
Cluster structure of k-means clustering via principal component analysis
-
[DH04] C. Ding and X. He. Cluster structure of k-means clustering via principal component analysis. In PAKDD, pages 414-418, 2004. Available from World Wide Web: http://springerlink.metapress.com/openurl.asp? genre=article&issn=0302-9743&volume=3056&spage=414.
-
(2004)
PAKDD
, pp. 414-418
-
-
Ding, C.1
He, X.2
-
14
-
-
0035789644
-
Co-clustering documents and words using bipartite spectral graph partitioning
-
ACM Press, New York
-
[Dhi01] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proc. 7th ACM SIGKDD, pages 269-274, ACM Press, New York, 2001.
-
(2001)
Proc. 7th ACM SIGKDD
, pp. 269-274
-
-
Dhillon, I.S.1
-
16
-
-
0000063845
-
An improved spectral graph partitioning algorithm for mapping parallel computations
-
[HL95] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16(2):452-469, 1995. Available from World Wide Web: citeseer.nj.nec.com/ hendrickson95improved.html.
-
(1995)
SIAM J. Sci. Comput.
, vol.16
, Issue.2
, pp. 452-469
-
-
Hendrickson, B.1
Leland, R.2
-
17
-
-
0242652097
-
Feature selection and document clustering
-
M. Berry, editor, Springer, New York
-
[KDN04] J. Kogan, I. S. Dhillon, and C. Nicholas. Feature selection and document clustering. In M. Berry, editor, A Comprehensive Survey of Text Mining. Springer, New York, 2004.
-
(2004)
A Comprehensive Survey of Text Mining
-
-
Kogan, J.1
Dhillon, I.S.2
Nicholas, C.3
-
18
-
-
0036647190
-
An efficient k-means clustering algorithm: Analysis and implementation
-
[KMN+02] T. Kanungo, D. M. Mount, N. S. Netanyahu, D. Platko, and A. Y. Wu. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. PAMI, 24(7):881-892, 2002.
-
(2002)
IEEE Trans. PAMI
, vol.24
, Issue.7
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Platko, D.4
Wu, A.Y.5
-
20
-
-
84892096824
-
PCA and kernel PCA using polynomial filtering: A case study on face recognition
-
[KS05] E. Kokiopoulou and Y. Saad. PCA and kernel PCA using polynomial filtering: a case study on face recognition. In SIAM Conf. on Data Mining, 2005.
-
(2005)
SIAM Conf. on Data Mining
-
-
Kokiopoulou, E.1
Saad, Y.2
-
22
-
-
34748835594
-
Clustering very large datasets with PDDP
-
J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, New York
-
[LB06] D. Littau and D. Boley. Clustering very large datasets with PDDP. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 99-126. Springer, New York, 2006.
-
(2006)
Grouping Multidimensional Data: Recent Advances in Clustering
, pp. 99-126
-
-
Littau, D.1
Boley, D.2
-
23
-
-
0020102027
-
Least squares quantization in PCM
-
[Llo82] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory, 28:129-137, 1982.
-
(1982)
IEEE Trans. Information Theory
, vol.28
, pp. 129-137
-
-
Lloyd, S.P.1
-
24
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
[MMR+01] K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181-202, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-202
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
25
-
-
45549117987
-
Term weighting approaches in automatic text retrieval
-
[SB88] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Information Processing and Management, 24(5):513-523, 1988.
-
(1988)
Information Processing and Management
, vol.24
, Issue.5
, pp. 513-523
-
-
Salton, G.1
Buckley, C.2
-
27
-
-
22044455069
-
Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
-
[SEKX98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2):169-194, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.-P.3
Xu, X.4
-
28
-
-
2442439674
-
A comparison of document clustering techniques
-
Boston, MA
-
[SKK00] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In 6th ACM SIGKDD, World Text Mining Conference, Boston, MA, 2000. Available from World Wide Web: citeseer.nj.nec.com/ steinbach00comparison. html.
-
(2000)
6th ACM SIGKDD, World Text Mining Conference
-
-
Steinbach, M.1
Karypis, G.2
Kumar, V.3
-
30
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
[SSM98] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.R.3
-
31
-
-
23944477313
-
A parallel hybrid Web document clustering algorithm and its performance study
-
[XZ04] S. Xu and J. Zhang. A parallel hybrid Web document clustering algorithm and its performance study. J. Supercomputing, 30(2):117-131, 2004.
-
(2004)
J. Supercomputing
, vol.30
, Issue.2
, pp. 117-131
-
-
Xu, S.1
Zhang, J.2
-
33
-
-
0842300534
-
Clustering incomplete data using kernel-based fuzzy c-means algorithm
-
[ZC03] D. Q. Zhang and S. C. Chen. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Processing Letters, 18(3):155-162, 2003.
-
(2003)
Neural Processing Letters
, vol.18
, Issue.3
, pp. 155-162
-
-
Zhang, D.Q.1
Chen, S.C.2
-
34
-
-
33746774616
-
PDDP (l): Towards a flexible principal direction divisive partitioning clustering algorithm
-
D. Boley, I. Dhillon, J. Ghosh, and J. Kogan, editors, Melbourne, FL, November
-
[ZG03] D. Zeimpekis and E. Gallopoulos. PDDP (l): towards a flexible principal direction divisive partitioning clustering algorithm. In D. Boley, I. Dhillon, J. Ghosh, and J. Kogan, editors, Proc. Workshop on Clustering Large Data Sets (held in conjunction with the Third IEEE Int'l. Conf. Data Min.), pages 26-35, Melbourne, FL, November 2003.
-
(2003)
Proc. Workshop on Clustering Large Data Sets (held in Conjunction with the Third IEEE Int'l. Conf. Data Min.)
, pp. 26-35
-
-
Zeimpekis, D.1
Gallopoulos, E.2
-
35
-
-
84891988635
-
TMG: A MATLAB toolbox for generating term-document matrices from text collections
-
J. Kogan, C. Nicholas, and M. Teboulle, editors, Springer, New York
-
[ZG06] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB toolbox for generating term-document matrices from text collections. In J. Kogan, C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages 187-210. Springer, New York, 2006.
-
(2006)
Grouping Multidimensional Data: Recent Advances in Clustering
, pp. 187-210
-
-
Zeimpekis, D.1
Gallopoulos, E.2
-
36
-
-
0013246766
-
-
[ZHD+01] H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Spectral relaxation for kmeans clustering. In NIPS, pages 1057-1064, 2001. Available from World Wide Web: http://www-2.cs.cmu.edu/Groups/NIPS/NIPS2001/papers/psgz/AA41.ps.gz.
-
(2001)
Spectral Relaxation for Kmeans Clustering
, pp. 1057-1064
-
-
Zha, H.1
He, X.2
Ding, C.3
Gu, M.4
Simon, H.5
|