-
1
-
-
0032672778
-
Homotopy perturbation technique
-
He J.-H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg. 1999, 178:257-262.
-
(1999)
Comput. Methods Appl. Mech. Engrg.
, vol.178
, pp. 257-262
-
-
-
2
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for non-linear problems
-
He J.-H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 2000, 35:37-43.
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 37-43
-
-
-
3
-
-
3943092529
-
Comparison of homotopy perturbation method and homotopy analysis method
-
He J.-H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 2004, 156:527-539.
-
(2004)
Appl. Math. Comput.
, vol.156
, pp. 527-539
-
-
-
4
-
-
17844387391
-
Homotopy perturbation method for bifurcation of nonlinear problems
-
He J.-H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlin. Sci. Numer. Simulat. 2005, 6:207-208.
-
(2005)
Int. J. Nonlin. Sci. Numer. Simulat.
, vol.6
, pp. 207-208
-
-
-
5
-
-
33748922411
-
Non-perturbative methods for strongly nonlinear problems
-
de-Verlag, Berlin
-
He J.-H. Non-perturbative methods for strongly nonlinear problems. Dissertation 2006, de-Verlag, Berlin.
-
(2006)
Dissertation
-
-
-
6
-
-
30644460357
-
Homotopy perturbation method for solving boundary value problems
-
He J.-H. Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 2006, 350:87-88.
-
(2006)
Phys. Lett. A
, vol.350
, pp. 87-88
-
-
He, J.-H.1
-
7
-
-
33746584753
-
New interpretation of homotopy perturbation method
-
He J.-H. New interpretation of homotopy perturbation method. Int. J. Modern Phys. B 2006, 20:2561-2568.
-
(2006)
Int. J. Modern Phys. B
, vol.20
, pp. 2561-2568
-
-
-
8
-
-
50949124409
-
Recent development of the homotopy perturbation method
-
He J.-H. Recent development of the homotopy perturbation method. Topol. Methods Nonlinear Anal. 2008, 31:205-209.
-
(2008)
Topol. Methods Nonlinear Anal.
, vol.31
, pp. 205-209
-
-
-
9
-
-
58149216130
-
An elementary introduction to the homotopy perturbation method
-
He J.-H. An elementary introduction to the homotopy perturbation method. Comput. Math. Appl. 2009, 57:410-412.
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 410-412
-
-
-
10
-
-
33847658380
-
Homotopy analysis method for heat radiation equations
-
Abbasbandy S. Homotopy analysis method for heat radiation equations. Int. Comm. Heat Mass Transf. 2007, 34:380-387.
-
(2007)
Int. Comm. Heat Mass Transf.
, vol.34
, pp. 380-387
-
-
Abbasbandy, S.1
-
11
-
-
37049028402
-
Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation
-
Domairry G., Nadim N. Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation. Int. Comm. Heat Mass Transf. 2008, 35:93-102.
-
(2008)
Int. Comm. Heat Mass Transf.
, vol.35
, pp. 93-102
-
-
Domairry, G.1
Nadim, N.2
-
12
-
-
20744434836
-
A homotopy method for the inversion of a two-dimensional acoustic wave equation
-
Han B., Fu H.S., Li Z. A homotopy method for the inversion of a two-dimensional acoustic wave equation. Inverse Probl. Sci. Eng. 2005, 13:411-431.
-
(2005)
Inverse Probl. Sci. Eng.
, vol.13
, pp. 411-431
-
-
Han, B.1
Fu, H.S.2
Li, Z.3
-
14
-
-
33144478462
-
Assessment of homotopy-perturbation and perturbation methods in heat radiation equations
-
Ganji D.D., Rajabi A. Assessment of homotopy-perturbation and perturbation methods in heat radiation equations. Int. Comm. Heat & Mass Transf. 2006, 33:391-400.
-
(2006)
Int. Comm. Heat & Mass Transf.
, vol.33
, pp. 391-400
-
-
Ganji, D.D.1
Rajabi, A.2
-
16
-
-
40349087169
-
Piecewise homotopy methods for nonlinear ordinary differential equations
-
Ramos J.I. Piecewise homotopy methods for nonlinear ordinary differential equations. Appl. Math. Comput. 2008, 198:92-116.
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 92-116
-
-
Ramos, J.I.1
-
17
-
-
55649112486
-
Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method
-
Yildirim A. Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Comput. Math. Appl. 2008, 56:3175-3180.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 3175-3180
-
-
Yildirim, A.1
-
18
-
-
44949134839
-
Solution of delay differential equations via a homotopy perturbation method
-
Shakeri F., Dehghan M. Solution of delay differential equations via a homotopy perturbation method. Math. Comput. Model. 2008, 48:486-498.
-
(2008)
Math. Comput. Model.
, vol.48
, pp. 486-498
-
-
Shakeri, F.1
Dehghan, M.2
-
19
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He J.-H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitions Fractals 2005, 26:695-700.
-
(2005)
Chaos Solitions Fractals
, vol.26
, pp. 695-700
-
-
-
20
-
-
61749098407
-
Numerical method for the wave and nonlinear diffusion equations with the homotopy perturbation method
-
Chun C., Jafari H., Kim Y.-I. Numerical method for the wave and nonlinear diffusion equations with the homotopy perturbation method. Comput. Math. Appl. 2009, 57:1226-1231.
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 1226-1231
-
-
Chun, C.1
Jafari, H.2
Kim, Y.-I.3
-
21
-
-
58849156443
-
Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition
-
Li X., Xu M., Jiang X. Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition. Appl. Math. Comput. 2009, 208:434-439.
-
(2009)
Appl. Math. Comput.
, vol.208
, pp. 434-439
-
-
Li, X.1
Xu, M.2
Jiang, X.3
-
22
-
-
34347219776
-
Inverse problem of diffusion equation by He's homotopy perturbation method
-
Shakeri F., Dehghan M. Inverse problem of diffusion equation by He's homotopy perturbation method. Phys. Scr. 2007, 75:551-556.
-
(2007)
Phys. Scr.
, vol.75
, pp. 551-556
-
-
Shakeri, F.1
Dehghan, M.2
-
23
-
-
34347360559
-
Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods
-
Sadighi A., Ganji D.D. Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 2007, 367:83-87.
-
(2007)
Phys. Lett. A
, vol.367
, pp. 83-87
-
-
Sadighi, A.1
Ganji, D.D.2
-
24
-
-
44349192630
-
Homotopy perturbation method for solving hyperbolic partial differential equations
-
Biazar J., Ghazvini H. Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 2008, 56:453-458.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 453-458
-
-
Biazar, J.1
Ghazvini, H.2
-
25
-
-
34547842881
-
Some nonlinear heat transfer equations solved by three approximate methods
-
Ganji D.D., Hosseini M.J., Shayegh J. Some nonlinear heat transfer equations solved by three approximate methods. Int. Comm. Heat & Mass Transf. 2007, 34:1003-1016.
-
(2007)
Int. Comm. Heat & Mass Transf.
, vol.34
, pp. 1003-1016
-
-
Ganji, D.D.1
Hosseini, M.J.2
Shayegh, J.3
-
26
-
-
34548033732
-
Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations
-
Ganji D.D., Afrouzi G.A., Talarposhti R.A. Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations. Phys. Lett. A 2007, 368:450-457.
-
(2007)
Phys. Lett. A
, vol.368
, pp. 450-457
-
-
Ganji, D.D.1
Afrouzi, G.A.2
Talarposhti, R.A.3
-
27
-
-
34250832732
-
Application of variational iteration and homotopy-perturbation methods to nonlinear heat transfer equations with variable coefficients
-
Khaleghi H., Ganji D.D., Sadighi A. Application of variational iteration and homotopy-perturbation methods to nonlinear heat transfer equations with variable coefficients. Numer. Heat Transfer A 2007, 52:25-42.
-
(2007)
Numer. Heat Transfer A
, vol.52
, pp. 25-42
-
-
Khaleghi, H.1
Ganji, D.D.2
Sadighi, A.3
-
28
-
-
33751251025
-
Application of homotopy perturbation method in nonlinear heat conduction and convection equations
-
Rajabi A., Ganji D.D., Taherian H. Application of homotopy perturbation method in nonlinear heat conduction and convection equations. Phys. Lett. A 2007, 360:570-573.
-
(2007)
Phys. Lett. A
, vol.360
, pp. 570-573
-
-
Rajabi, A.1
Ganji, D.D.2
Taherian, H.3
-
30
-
-
27944450383
-
Stefan problem solved by Adomian decomposition method
-
Grzymkowski R., słSłota D. Stefan problem solved by Adomian decomposition method. Inter. J. Computer Math. 2005, 82:851-856.
-
(2005)
Inter. J. Computer Math.
, vol.82
, pp. 851-856
-
-
Grzymkowski, R.1
Słota, D.2
-
31
-
-
33745142257
-
One-phase inverse Stefan problems solved by Adomian decomposition method
-
Grzymkowski R., słota D. One-phase inverse Stefan problems solved by Adomian decomposition method. Comput. Math. Appl. 2006, 51:33-40.
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 33-40
-
-
Grzymkowski, R.1
Słota, D.2
-
32
-
-
33750062574
-
Comparing the Adomian decomposition method and Runge-Kutta method for the solutions of the Stefan problem
-
Grzymkowski R., Pleszczyński M., słota D. Comparing the Adomian decomposition method and Runge-Kutta method for the solutions of the Stefan problem. Inter. J. Computer Math. 2006, 83:409-417.
-
(2006)
Inter. J. Computer Math.
, vol.83
, pp. 409-417
-
-
Grzymkowski, R.1
Pleszczyński, M.2
słota, D.3
-
33
-
-
34748890449
-
Direct and inverse one-phase Stefan problem solved by variational iteration method
-
słota D. Direct and inverse one-phase Stefan problem solved by variational iteration method. Comput. Math. Appl. 2007, 54:1139-1146.
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 1139-1146
-
-
słota, D.1
-
34
-
-
70350571173
-
A new application of He's variational iteration method for the solution of the one-phase Stefan problem
-
słota D., Zielonka A. A new application of He's variational iteration method for the solution of the one-phase Stefan problem. Comput. Math. Appl. 2009, 58:2489-2494.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2489-2494
-
-
słota, D.1
Zielonka, A.2
-
35
-
-
37649008219
-
Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem
-
słota D. Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem. Int. Comm. Heat & Mass Transf. 2008, 35:149-156.
-
(2008)
Int. Comm. Heat & Mass Transf.
, vol.35
, pp. 149-156
-
-
słota, D.1
-
36
-
-
52949131577
-
Solving the inverse Stefan design problem using genetic algorithms
-
słota D. Solving the inverse Stefan design problem using genetic algorithms. Inverse Probl. Sci. Eng. 2008, 16:829-846.
-
(2008)
Inverse Probl. Sci. Eng.
, vol.16
, pp. 829-846
-
-
słota, D.1
-
37
-
-
61449249812
-
Identification of the cooling condition in 2-D and 3-D continuous casting processes
-
słota D. Identification of the cooling condition in 2-D and 3-D continuous casting processes. Numer. Heat Transfer B 2009, 55:155-176.
-
(2009)
Numer. Heat Transfer B
, vol.55
, pp. 155-176
-
-
słota, D.1
|