메뉴 건너뛰기




Volumn 2, Issue 2, 2010, Pages 218-236

Algorithm quasi-optimal (AQ) learning

Author keywords

[No Author keywords available]

Indexed keywords

ATMOSPHERIC RELEASE; COVERING PROBLEMS; DECISION RULES; DIFFERENT DOMAINS; DISTRIBUTED SENSOR; EVOLUTIONARY COMPUTATIONS; FIELD EXPERIMENT; MACHINE-LEARNING; PRAIRIE GRASS; QUASI-OPTIMAL; SATISFIABILITY PROBLEMS; SOURCE DETECTION; SYMBOLIC MACHINE LEARNING;

EID: 77953534293     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.78     Document Type: Review
Times cited : (31)

References (49)
  • 2
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R. A theory and methodology of inductive learning. Mach Learn 1983, 1:83-134.
    • (1983) Mach Learn , vol.1 , pp. 83-134
    • Michalski, R.1
  • 3
    • 0015725625 scopus 로고
    • AQVAL/1 computer implementation of a variable-valued logic system VL 1 and examples of its application to pattern recognition
    • Washington, D.C.
    • Michalski R. AQVAL/1 computer implementation of a variable-valued logic system VL 1 and examples of its application to pattern recognition. First International Joint Conference on Pattern Recognition, Washington, D.C., 1973, 3-17.
    • (1973) First International Joint Conference on Pattern Recognition , pp. 3-17
    • Michalski, R.1
  • 4
    • 78651528397 scopus 로고
    • An application of variable-valued logic to inductive learning of plant disease diagnostic rules
    • Logan UT: IEEE Computer Society Press Los Alamitos
    • Chilausky R, Jacobsen B, Michalski R. An application of variable-valued logic to inductive learning of plant disease diagnostic rules. Proceedings of the Sixth International Symposium on Multiple-valued Logic. Logan, UT: IEEE Computer Society Press Los Alamitos; 1976, 233-240.
    • (1976) Proceedings of the Sixth International Symposium on Multiple-valued Logic , pp. 233-240
    • Chilausky, R.1    Jacobsen, B.2    Michalski, R.3
  • 8
    • 85005299854 scopus 로고    scopus 로고
    • The multipurpose incremental learning system AQ15 and its testing application to three medical domains
    • Philadelphia, PA, August 11-15, 1986
    • Michalski R, Mozetic I, Hong J, Lavrac N. The multipurpose incremental learning system AQ15 and its testing application to three medical domains. Proceedings of the 1986 AAAI Conference, Philadelphia, PA vol. 104; August 11-15 1986, 1041-1045.
    • Proceedings of the 1986 AAAI Conference , vol.104 , pp. 1041-1045
    • Michalski, R.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 16
    • 0000599779 scopus 로고
    • Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments
    • Wnek J, Michalski R. Hypothesis-driven constructive induction in AQ17-HCI: a method and experiments. Mach Learn 1994, 14:139-168.
    • (1994) Mach Learn , vol.14 , pp. 139-168
    • Wnek, J.1    Michalski, R.2
  • 26
    • 0002773716 scopus 로고
    • Incorporating problem specific knowledge into genetic algorithms
    • Grefenstette J. Incorporating problem specific knowledge into genetic algorithms. Genetic Alg Simul Annealing 1987, 4:42-60.
    • (1987) Genetic Alg Simul Annealing , vol.4 , pp. 42-60
    • Grefenstette, J.1
  • 31
    • 0036471466 scopus 로고    scopus 로고
    • Compact unstructured representations for evolutionary design
    • Hamda H, Jouve F, Lutton E, Schoenauer M, Sebag M. Compact unstructured representations for evolutionary design. Appl Intell 2002, 16:139-155.
    • (2002) Appl Intell , vol.16 , pp. 139-155
    • Hamda, H.1    Jouve, F.2    Lutton, E.3    Schoenauer, M.4    Sebag, M.5
  • 36
    • 0032171226 scopus 로고    scopus 로고
    • Application of adjoint tracer transport equations for evaluating source parameters
    • Pudykiewicz J. Application of adjoint tracer transport equations for evaluating source parameters. Atmos Environ 1998, 32:3039-3050.
    • (1998) Atmos Environ , vol.32 , pp. 3039-3050
    • Pudykiewicz, J.1
  • 37
    • 0034352720 scopus 로고    scopus 로고
    • Sub-surface nuclear tests monitoring through the ctbt xenon network
    • Hourdin F, Issartel JP. Sub-surface nuclear tests monitoring through the ctbt xenon network. Geophys Res Lett 2000, 27:2245-2248.
    • (2000) Geophys Res Lett , vol.27 , pp. 2245-2248
    • Hourdin, F.1    Issartel, J.P.2
  • 40
    • 77949308521 scopus 로고    scopus 로고
    • Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations
    • Atlanta, GA, January
    • Chow F, Kosović B,Chan T. Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations. Proceedings of the 86th AmericanMeteorological Society AnnualMeeting, Atlanta, GA, January 2006, 12-22.
    • (2006) Proceedings of the 86th AmericanMeteorological Society AnnualMeeting , pp. 12-22
    • Chow, F.1    Kosović, B.2    Chan, T.3
  • 41
    • 53749094775 scopus 로고    scopus 로고
    • Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference
    • Senocak I, Hengartner N, Short M, Daniel W. Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. Atmos Environ 2008, 42:7718-7727.
    • (2008) Atmos Environ , vol.42 , pp. 7718-7727
    • Senocak, I.1    Hengartner, N.2    Short, M.3    Daniel, W.4
  • 42
    • 27544460592 scopus 로고    scopus 로고
    • A demonstration of coupled receptor/ dispersion modeling with a genetic algorithm
    • Haupt SE. A demonstration of coupled receptor/ dispersion modeling with a genetic algorithm. Atmos Environ 2005, 39:7181-7189.
    • (2005) Atmos Environ , vol.39 , pp. 7181-7189
    • Haupt, S.E.1
  • 43
    • 58249134580 scopus 로고    scopus 로고
    • A genetic algorithm method to assimilate sensor data for a toxic contaminant release
    • Haupt SE, Young GS, Allen CT. A genetic algorithm method to assimilate sensor data for a toxic contaminant release. J Comput 2007, 2:85-93.
    • (2007) J Comput , vol.2 , pp. 85-93
    • Haupt, S.E.1    Young, G.S.2    Allen, C.T.3
  • 44
    • 33847073334 scopus 로고    scopus 로고
    • Improving pollutant source characterization by better estimating wind direction with a genetic algorithm
    • Allen CT, Young GS, Haupt SE. Improving pollutant source characterization by better estimating wind direction with a genetic algorithm. Atmos Environ 2007, 41:2283-2289.
    • (2007) Atmos Environ , vol.41 , pp. 2283-2289
    • Allen, C.T.1    Young, G.S.2    Haupt, S.E.3
  • 45
    • 57749176433 scopus 로고    scopus 로고
    • Bayesian inference and markov chain monte carlo sampling to reconstruct a contaminant source on a continental scale
    • Delle Monache L, Lundquistand J, Kosović B, Johannesson G, Dyer K, et al. Bayesian inference and markov chain monte carlo sampling to reconstruct a contaminant source on a continental scale. J Appl Meteor Climatol 2008, 47:2600-2613.
    • (2008) J Appl Meteor Climatol , vol.47 , pp. 2600-2613
    • Delle Monache, L.1    Lundquistand, J.2    Kosović, B.3    Johannesson, G.4    Dyer, K.5
  • 46
    • 0002133014 scopus 로고
    • The estimation of the dispersion of windborne material
    • Pasquill F. The estimation of the dispersion of windborne material. Meteorol Magazine 1961, 90:33-49.
    • (1961) Meteorol Magazine , vol.90 , pp. 33-49
    • Pasquill, F.1
  • 49
    • 0003721508 scopus 로고
    • United States Air Force, Air Research and Development Command, Air Force Cambridge Research Center; Cambridge, MA
    • Barad M, Haugen D. Project Prairie Grass, A Field Program in Diffusion: United States Air Force, Air Research and Development Command, Air Force Cambridge Research Center; Cambridge, MA, 1958.
    • (1958) Project Prairie Grass, A Field Program in Diffusion
    • Barad, M.1    Haugen, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.