메뉴 건너뛰기




Volumn 22, Issue 1, 2010, Pages 115-130

Asymptotics for censored regression quantiles

Author keywords

Asymptotic representation; Censored regression quantiles

Indexed keywords


EID: 77953529043     PISSN: 10485252     EISSN: 10290311     Source Type: Journal    
DOI: 10.1080/10485250903105009     Document Type: Article
Times cited : (30)

References (7)
  • 1
    • 1142277399 scopus 로고    scopus 로고
    • Censored regression quantiles
    • S. Portnoy, Censored regression quantiles, J. Am. Stat. Assoc. 98 (2003), pp. 1001-1012.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 1001-1012
    • Portnoy, S.1
  • 2
    • 0001104182 scopus 로고
    • The two-sample problem with censored data
    • L. Le Cam and J. Neyman, eds., Prentice-Hall, NewYork
    • B. Efron, The two-sample problem with censored data, in Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics, Vol. IV, L. Le Cam and J. Neyman, eds., Prentice-Hall, NewYork, 1967, pp. 831-853.
    • (1967) Proceedings of the Fifth Berkeley Symposium In Mathematical Statistics , vol.IV , pp. 831-853
    • Efron, B.1
  • 4
    • 48849099189 scopus 로고    scopus 로고
    • Survival analysis with quantile regression models
    • L. Peng and Y. Huang, Survival analysis with quantile regression models, J.Am. Stat.Assoc. 103 (2008), pp. 637-649.
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 637-649
    • Peng, L.1    Huang, Y.2
  • 5
    • 84925105967 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • R. Koenker, Quantile Regression, Cambridge University Press, Cambridge, 2005.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 6
    • 77953521671 scopus 로고    scopus 로고
    • On monotonicity of regression quantile functions
    • T. Neocleous and S. Portnoy, On monotonicity of regression quantile functions, Stat. Prob. Lett. 78 (2008), pp. 1226-1229.
    • (2008) Stat. Prob. Lett. , vol.78 , pp. 1226-1229
    • Neocleous, T.1    Portnoy, S.2
  • 7
    • 0030343232 scopus 로고    scopus 로고
    • A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs
    • X. He and Q.-M. Shao, A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs, Ann. Stat. 24 (1996), pp. 2608-2630.
    • (1996) Ann. Stat. , vol.24 , pp. 2608-2630
    • He, X.1    Shao, Q.-M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.