메뉴 건너뛰기




Volumn 14, Issue 3, 2010, Pages 299-331

Ensemble missing data techniques for software effort prediction

Author keywords

Decision tree; Ensemble; Imputation; Incomplete data; Machine learning; Missing data techniques; Software prediction; Supervised learning

Indexed keywords


EID: 77953511815     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2010-0423     Document Type: Article
Times cited : (40)

References (74)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 26 (2) (1996), 123-140.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0026944407 scopus 로고
    • A pattern recognition approach to software engineering data analysis
    • L. Briand, V. Basili and W. Thomas, A pattern recognition approach to software engineering data analysis, IEEE Transactions on Software Engineering 18(11) (1992), 931-942.
    • (1992) IEEE Transactions on Software Engineering , vol.18 , Issue.11 , pp. 931-942
    • Briand, L.1    Basili, V.2    Thomas, W.3
  • 8
    • 0001929348 scopus 로고
    • Assistant 86: A knowledge-elicitation tool for sophisticated users
    • I. Bratko and N. Lavrac, editors, Sigma Press, Wilmslow, England
    • B. Cestnik, I. Kononenko and I. Bratko, Assistant 86: a knowledge-elicitation tool for sophisticated users. In I. Bratko and N. Lavrac, editors, European Working Session on Learning -EWSL87, Sigma Press, Wilmslow, England, 1987.
    • (1987) European Working Session on Learning -EWSL87
    • Cestnik, B.1    Kononenko, I.2    Bratko, I.3
  • 10
    • 0041611508 scopus 로고    scopus 로고
    • Nearest neighbour imputation for survey data
    • J. Chen and J. Shao. Nearest Neighbour Imputation for Survey Data. Journal of Official Statistics 16(2) (2000), 113-131.
    • (2000) Journal of Official Statistics , vol.16 , Issue.2 , pp. 113-131
    • Chen, J.1    Shao, J.2
  • 11
    • 84993661659 scopus 로고    scopus 로고
    • M-tree: An efficient access method for similarity search in metric spaces
    • P. Ciaccia, M. Patella and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces, In VLDB '97, 1997, 426-435.
    • (1997) VLDB , vol.97 , pp. 426-435
    • Ciaccia, P.1    Patella, M.2    Zezula, P.3
  • 13
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging boosting, and randomization
    • T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning 40(2) (2000), 139-158.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 14
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Lecture Notes in Computer Science, J. Kittler and F. Roli, eds
    • T.G. Dietterich, Ensemble Methods in Machine Learning, in: First InternationalWorkshop on Multiple Classifier Systems, Lecture Notes in Computer Science, J. Kittler and F. Roli, eds, 2000, 1-15.
    • (2000) First InternationalWorkshop on Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 16
    • 0033890902 scopus 로고    scopus 로고
    • Validating the ISO/IEC 15504 measures of software development process capability
    • K. El-Emam and A. Birk, Validating the ISO/IEC 15504 Measures of Software Development Process Capability, Journal of Systems and Software 51(2) (2000), 119-149.
    • (2000) Journal of Systems and Software , vol.51 , Issue.2 , pp. 119-149
    • El-Emam, K.1    Birk, A.2
  • 18
  • 20
    • 0003998487 scopus 로고
    • (Unpublished Manuscript) University Park, PA: Pennsylvania State University Department of Bahavioral Health
    • J.W. Graham and S.M. Hofer, EMCOV.EXE user's Guide (Unpublished Manuscript), University Park, PA: Pennsylvania State University Department of Bahavioral Health, 1993.
    • (1993) EMCOV.EXE User's Guide
    • Graham, J.W.1    Hofer, S.M.2
  • 22
    • 2942689368 scopus 로고    scopus 로고
    • Confidence intervals for the effect of a prognostic factor after selection of an optimal cutpoint
    • N. Hollander, W. Sauerbrei and M. Schumacher, Confidence intervals for the effect of a prognostic factor after selection of an optimal cutpoint, Statistics in Medicine 23 (2004), 1701-1713.
    • (2004) Statistics in Medicine , vol.23 , pp. 1701-1713
    • Hollander, N.1    Sauerbrei, W.2    Schumacher, M.3
  • 26
    • 84956620225 scopus 로고    scopus 로고
    • Issues on the effective use of CBR technology for software project prediction
    • G.F. Kadoda, M. Cartwright and M. Shepperd, Issues on the Effective Use of CBR Technology for Software Project Prediction, ICCBR (2001), 276-290.
    • (2001) ICCBR , pp. 276-290
    • Kadoda, G.F.1    Cartwright, M.2    Shepperd, M.3
  • 28
    • 3543063465 scopus 로고    scopus 로고
    • Comparative assessment of software quality classification techniques: An empirical case study
    • T.M. Khoshgoftaar and N. Seliya, Comparative assessment of software quality classification techniques: an empirical case study, Empirical Software Engineering Journal 9(3) (2004), 229-257.
    • (2004) Empirical Software Engineering Journal , vol.9 , Issue.3 , pp. 229-257
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 32
    • 0004279229 scopus 로고
    • (2nd Ed.), Monterey CA: Brookss Cole Publishing Company
    • R.E. Kirk, Experimental Design (2nd Ed.), Monterey, CA: Brooks, Cole Publishing Company, 1982.
    • (1982) Experimental Design
    • Kirk, R.E.1
  • 33
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • J.O. Kim and J. Curry, The treatment of missing data in multivariate analysis, Sociological Methods and Research 6 (1977), 215-240.
    • (1977) Sociological Methods and Research , vol.6 , pp. 215-240
    • Kim, J.O.1    Curry, J.2
  • 34
    • 33749846894 scopus 로고    scopus 로고
    • Credit risk analysis using a reliability-based neural network ensemble model
    • K.K. Lai, L. Yu, S.Y.Wang and L.G. Zhou, Credit risk analysis using a reliability-based neural network ensemble model, Lecture Notes in Computer Science 4132 (2006), 682-690.
    • (2006) Lecture Notes in Computer Science , vol.4132 , pp. 682-690
    • Lai, K.K.1    Yu, L.2    Wang, S.Y.3    Zhou, L.G.4
  • 35
  • 38
    • 0012275527 scopus 로고    scopus 로고
    • Practical machine learning for software engineering and knowledge engineering
    • [Available from] [January 2009]
    • T. Menzies, Practical Machine Learning for Software Engineering and Knowledge Engineering. In Handbook of Software Engineering and Knowledge Engineering, 2001. [Available from http://tim.menzies.com/pdf/00ml.pdf, January 2009].
    • (2001) Handbook of Software Engineering and Knowledge Engineering
    • Menzies, T.1
  • 40
    • 77953515076 scopus 로고    scopus 로고
    • MULTIPLE IMPUTATION SOFTWARE. [Available from] or http:// methcenter.psu.edu/EMCOV.html; January 2009]
    • MULTIPLE IMPUTATION SOFTWARE. [Available from http://www.stat.psu.edu/ jls/misoftwa.html or http:// methcenter.psu.edu/EMCOV.html; January 2009].
  • 41
    • 0026123944 scopus 로고
    • Designing storage efficient decision trees
    • O.J. Murphy and R.L. McCraw, Designing storage efficient decision trees, IEEE Transactions on Computing 40(3) (1991), 315-319.
    • (1991) IEEE Transactions on Computing , vol.40 , Issue.3 , pp. 315-319
    • Murphy, O.J.1    McCraw, R.L.2
  • 44
    • 0035506257 scopus 로고    scopus 로고
    • Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods
    • I. Myrtveit, E. Stensrud and U. Olsson, Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods, IEEE Transactions on Software Engineering 27(11) (2001), 1999-11013
    • (2001) IEEE Transactions on Software Engineering , vol.27 , Issue.11 , pp. 1999-11013
    • Myrtveit, I.1    Stensrud, E.2    Olsson, U.3
  • 45
    • 0036709435 scopus 로고    scopus 로고
    • An enhanced neural network technique for software risk analysis
    • D.E. Neumann, An Enhanced Neural Network Technique for Software Risk Analysis, IEEE Transactions on Software Engineering, (2002), 904-912.
    • (2002) IEEE Transactions on Software Engineering , pp. 904-912
    • Neumann, D.E.1
  • 47
    • 0025399116 scopus 로고
    • Empirically guided software development using metric-based classification trees
    • A.A. Porter and R.W. Selby, Empirically Guided Software Development Using Metric-Based Classification Trees, IEEE Software 7(2) (1990), 46-54.
    • (1990) IEEE Software , vol.7 , Issue.2 , pp. 46-54
    • Porter, A.A.1    Selby, R.W.2
  • 48
    • 0006473387 scopus 로고
    • Evaluating techniques for generating metric-based classification trees
    • A.A. Porter and R.W. Selby, Evaluating Techniques for Generating Metric-based Classification Trees, Journal of Systems Software (1990), 209-218.
    • (1990) Journal of Systems Software , pp. 209-218
    • Porter, A.A.1    Selby, R.W.2
  • 50
    • 33744584654 scopus 로고
    • Induction to decision trees
    • J.R. Quinlan, Induction to Decision Trees, Machine Learning 1 (1986), 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 56
    • 0032219074 scopus 로고    scopus 로고
    • Multiple Imputation for multivariate missing data problems: A data analyst's perspective
    • J.L. Schafer and M.K. Olsen, Multiple Imputation for multivariate missing data problems: a data analyst's perspective, Multivariate Behavioral Research 33(4) (1998), 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , Issue.4 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 57
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L. Schafer and J.W. Graham, Missing data: Our view of the state of the art, Psychological Methods 7(2) (2002), 147-177.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 58
    • 0024123707 scopus 로고
    • Learning from Examples: Generation and evaluation of decision trees for software resource analysis
    • R.W. Selby and A.A. Porter, Learning from Examples: Generation and Evaluation of Decision Trees for Software Resource Analysis, IEEE Trans on Soft Eng 14(12) (1988), 1743-1757.
    • (1988) IEEE Trans on Soft Eng , vol.14 , Issue.12 , pp. 1743-1757
    • Selby, R.W.1    Porter, A.A.2
  • 63
    • 17444371705 scopus 로고    scopus 로고
    • A short note on safest default missingness mechanism assumptions
    • Q. Song and M. Sheppered, A Short Note on Safest Default Missingness Mechanism Assumptions, Empirical Software Engineering 10(2) (2005), 235-243.
    • (2005) Empirical Software Engineering , vol.10 , Issue.2 , pp. 235-243
    • Song, Q.1    Sheppered, M.2
  • 64
    • 0029255026 scopus 로고
    • Machine learning approaches to estimating software development effort
    • K. Srinivasan and D. Fisher, Machine Learning Approaches to Estimating Software Development Effort, IEEE Transaction on Software Engineering 21(2) (1995), 126-137.
    • (1995) IEEE Transaction on Software Engineering , vol.21 , Issue.2 , pp. 126-137
    • Srinivasan, K.1    Fisher, D.2
  • 65
    • 0001313875 scopus 로고
    • Integrating time domain and input domain analyses of software reliability using tree-based models
    • J. Tian, Integrating Time Domain and Input Domain Analyses of Software Reliability Using Tree-Based Models, IEEE Transactions on Software Engineering 21(12) (1995), 945-958.
    • (1995) IEEE Transactions on Software Engineering , vol.21 , Issue.12 , pp. 945-958
    • Tian, J.1
  • 66
    • 0032027010 scopus 로고    scopus 로고
    • Analyzing and improving reliability: A tree-based approach
    • J. Tian and J. Palma, Analyzing and Improving Reliability: A Tree-based Approach, IEEE Software 15(2) (1998), 97-104.
    • (1998) IEEE Software , vol.15 , Issue.2 , pp. 97-104
    • Tian, J.1    Palma, J.2
  • 67
    • 67651230252 scopus 로고    scopus 로고
    • An empirical comparison of techniques handling incomplete data using decision trees
    • B. Twala, An Empirical Comparison of Techniques Handling Incomplete Data Using Decision Trees, Applied Artificial Intelligence 23(5) (2009), 373-405.
    • (2009) Applied Artificial Intelligence , vol.23 , Issue.5 , pp. 373-405
    • Twala, B.1
  • 69
    • 40849140610 scopus 로고    scopus 로고
    • Good methods for coping with missing data in decision trees
    • B. Twala, M.C. Jones and D.J. Hand, Good methods for coping with missing data in decision trees, Pattern Recognition Letters 29 (2008), 950-956.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 950-956
    • Twala, B.1    Jones, M.C.2    Hand, D.J.3
  • 70
    • 38049110017 scopus 로고    scopus 로고
    • Classifying incomplete software engineering data using decision trees: An improved probabilistic approach
    • November, Dallas, TX, USA
    • B. Twala, M. Cartwright and G. Liebchen, Classifying Incomplete Software Engineering Data Using Decision Trees: An Improved Probabilistic Approach, In Proceedings of Software Engineering Applications, November 13-15, 2006, Dallas, TX, USA.
    • (2006) Proceedings of Software Engineering Applications , pp. 13-15
    • Twala, B.1    Cartwright, M.2    Liebchen, G.3
  • 74
    • 0028443213 scopus 로고
    • Bias in information-based measures in decision tree induction
    • A.P. White and W.Z. Liu, Bias in information-based measures in decision tree induction, Machine Leaning 15 (1994), 321-329.
    • (1994) Machine Leaning , vol.15 , pp. 321-329
    • White, A.P.1    Liu, W.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.