-
1
-
-
0032645080
-
-
E. Bauer and R. Kohavo, An empirical comparison of voting classification algorithms: Bagging, boosting and variants, Machine Learning, 36 1/2 (1989), 105-139.
-
(1989)
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting and Variants, Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavo, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 26 (2) (1996), 123-140.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0003619255
-
-
Statistics Department, University of California at Berkeley
-
L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California at Berkeley, 1996b.
-
(1996)
Bias, Variance, and Arcing Classifiers, Technical Report
, vol.460
-
-
Breiman, L.1
-
5
-
-
0026944407
-
A pattern recognition approach to software engineering data analysis
-
L. Briand, V. Basili and W. Thomas, A pattern recognition approach to software engineering data analysis, IEEE Transactions on Software Engineering 18(11) (1992), 931-942.
-
(1992)
IEEE Transactions on Software Engineering
, vol.18
, Issue.11
, pp. 931-942
-
-
Briand, L.1
Basili, V.2
Thomas, W.3
-
8
-
-
0001929348
-
Assistant 86: A knowledge-elicitation tool for sophisticated users
-
I. Bratko and N. Lavrac, editors, Sigma Press, Wilmslow, England
-
B. Cestnik, I. Kononenko and I. Bratko, Assistant 86: a knowledge-elicitation tool for sophisticated users. In I. Bratko and N. Lavrac, editors, European Working Session on Learning -EWSL87, Sigma Press, Wilmslow, England, 1987.
-
(1987)
European Working Session on Learning -EWSL87
-
-
Cestnik, B.1
Kononenko, I.2
Bratko, I.3
-
9
-
-
85117908774
-
Bayesian classification
-
Morgan Kaufmann Publishers: San Meteo, CA
-
P. Cheeseman, J. Kelly,M. Self, J. Stutz,W. Taylor and D. Freeman, Bayesian Classification. In Proceedings of American Association of Artificial Intelligence (AAAI), Morgan Kaufmann Publishers: San Meteo, CA, 1988, 607-611.
-
(1988)
Proceedings of American Association of Artificial Intelligence (AAAI)
, pp. 607-611
-
-
Cheeseman, P.1
Kelly, J.2
Self, M.3
Stutz, J.4
Taylor, W.5
Freeman, D.6
-
10
-
-
0041611508
-
Nearest neighbour imputation for survey data
-
J. Chen and J. Shao. Nearest Neighbour Imputation for Survey Data. Journal of Official Statistics 16(2) (2000), 113-131.
-
(2000)
Journal of Official Statistics
, vol.16
, Issue.2
, pp. 113-131
-
-
Chen, J.1
Shao, J.2
-
11
-
-
84993661659
-
M-tree: An efficient access method for similarity search in metric spaces
-
P. Ciaccia, M. Patella and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces, In VLDB '97, 1997, 426-435.
-
(1997)
VLDB
, vol.97
, pp. 426-435
-
-
Ciaccia, P.1
Patella, M.2
Zezula, P.3
-
12
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the em algorithm
-
Series B
-
A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood estimation from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39 (1977), 1-38.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging boosting, and randomization
-
T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning 40(2) (2000), 139-158.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
14
-
-
80053403826
-
Ensemble methods in machine learning
-
Lecture Notes in Computer Science, J. Kittler and F. Roli, eds
-
T.G. Dietterich, Ensemble Methods in Machine Learning, in: First InternationalWorkshop on Multiple Classifier Systems, Lecture Notes in Computer Science, J. Kittler and F. Roli, eds, 2000, 1-15.
-
(2000)
First InternationalWorkshop on Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
15
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Morgan Kauffmann, Los Altos, CA
-
J. Dougherty, R. Kohavi and M. Sahami, Supervised and Unsupervised Discretization of Continuous Features, In Proceedings of the 12th International Conference on Machine Learning, Morgan Kauffmann, Los Altos, CA, 1995.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
16
-
-
0033890902
-
Validating the ISO/IEC 15504 measures of software development process capability
-
K. El-Emam and A. Birk, Validating the ISO/IEC 15504 Measures of Software Development Process Capability, Journal of Systems and Software 51(2) (2000), 119-149.
-
(2000)
Journal of Systems and Software
, vol.51
, Issue.2
, pp. 119-149
-
-
El-Emam, K.1
Birk, A.2
-
17
-
-
1542358432
-
GP-based software quality prediction
-
M. Evett, T.M. Khoshgoftaar, P. Cheien and E. Allen, GP-based software quality prediction, In Proceedings of the 3rd Annual Genetic Programming Conference, 1998, 60-65.
-
(1998)
Proceedings of the 3rd Annual Genetic Programming Conference
, pp. 60-65
-
-
Evett, M.1
Khoshgoftaar, T.M.2
Cheien, P.3
Allen, E.4
-
20
-
-
0003998487
-
-
(Unpublished Manuscript) University Park, PA: Pennsylvania State University Department of Bahavioral Health
-
J.W. Graham and S.M. Hofer, EMCOV.EXE user's Guide (Unpublished Manuscript), University Park, PA: Pennsylvania State University Department of Bahavioral Health, 1993.
-
(1993)
EMCOV.EXE User's Guide
-
-
Graham, J.W.1
Hofer, S.M.2
-
22
-
-
2942689368
-
Confidence intervals for the effect of a prognostic factor after selection of an optimal cutpoint
-
N. Hollander, W. Sauerbrei and M. Schumacher, Confidence intervals for the effect of a prognostic factor after selection of an optimal cutpoint, Statistics in Medicine 23 (2004), 1701-1713.
-
(2004)
Statistics in Medicine
, vol.23
, pp. 1701-1713
-
-
Hollander, N.1
Sauerbrei, W.2
Schumacher, M.3
-
26
-
-
84956620225
-
Issues on the effective use of CBR technology for software project prediction
-
G.F. Kadoda, M. Cartwright and M. Shepperd, Issues on the Effective Use of CBR Technology for Software Project Prediction, ICCBR (2001), 276-290.
-
(2001)
ICCBR
, pp. 276-290
-
-
Kadoda, G.F.1
Cartwright, M.2
Shepperd, M.3
-
28
-
-
3543063465
-
Comparative assessment of software quality classification techniques: An empirical case study
-
T.M. Khoshgoftaar and N. Seliya, Comparative assessment of software quality classification techniques: an empirical case study, Empirical Software Engineering Journal 9(3) (2004), 229-257.
-
(2004)
Empirical Software Engineering Journal
, vol.9
, Issue.3
, pp. 229-257
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
32
-
-
0004279229
-
-
(2nd Ed.), Monterey CA: Brookss Cole Publishing Company
-
R.E. Kirk, Experimental Design (2nd Ed.), Monterey, CA: Brooks, Cole Publishing Company, 1982.
-
(1982)
Experimental Design
-
-
Kirk, R.E.1
-
33
-
-
84970352416
-
The treatment of missing data in multivariate analysis
-
J.O. Kim and J. Curry, The treatment of missing data in multivariate analysis, Sociological Methods and Research 6 (1977), 215-240.
-
(1977)
Sociological Methods and Research
, vol.6
, pp. 215-240
-
-
Kim, J.O.1
Curry, J.2
-
34
-
-
33749846894
-
Credit risk analysis using a reliability-based neural network ensemble model
-
K.K. Lai, L. Yu, S.Y.Wang and L.G. Zhou, Credit risk analysis using a reliability-based neural network ensemble model, Lecture Notes in Computer Science 4132 (2006), 682-690.
-
(2006)
Lecture Notes in Computer Science
, vol.4132
, pp. 682-690
-
-
Lai, K.K.1
Yu, L.2
Wang, S.Y.3
Zhou, L.G.4
-
38
-
-
0012275527
-
Practical machine learning for software engineering and knowledge engineering
-
[Available from] [January 2009]
-
T. Menzies, Practical Machine Learning for Software Engineering and Knowledge Engineering. In Handbook of Software Engineering and Knowledge Engineering, 2001. [Available from http://tim.menzies.com/pdf/00ml.pdf, January 2009].
-
(2001)
Handbook of Software Engineering and Knowledge Engineering
-
-
Menzies, T.1
-
40
-
-
77953515076
-
-
MULTIPLE IMPUTATION SOFTWARE. [Available from] or http:// methcenter.psu.edu/EMCOV.html; January 2009]
-
MULTIPLE IMPUTATION SOFTWARE. [Available from http://www.stat.psu.edu/ jls/misoftwa.html or http:// methcenter.psu.edu/EMCOV.html; January 2009].
-
-
-
-
42
-
-
77953530304
-
Lookahead and pathology in decision tree induction
-
Montreal, Canada: Morgan Kauffman
-
S.K. Murthy and S. Salzberg, Lookahead and pathology in decision tree induction, Proceedings of the 14th International Joint Conference on Artificial Intelligence, (1992), 309-347, Montreal, Canada: Morgan Kauffman.
-
(1992)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, pp. 309-347
-
-
Murthy, S.K.1
Salzberg, S.2
-
44
-
-
0035506257
-
Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods
-
I. Myrtveit, E. Stensrud and U. Olsson, Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods, IEEE Transactions on Software Engineering 27(11) (2001), 1999-11013
-
(2001)
IEEE Transactions on Software Engineering
, vol.27
, Issue.11
, pp. 1999-11013
-
-
Myrtveit, I.1
Stensrud, E.2
Olsson, U.3
-
45
-
-
0036709435
-
An enhanced neural network technique for software risk analysis
-
D.E. Neumann, An Enhanced Neural Network Technique for Software Risk Analysis, IEEE Transactions on Software Engineering, (2002), 904-912.
-
(2002)
IEEE Transactions on Software Engineering
, pp. 904-912
-
-
Neumann, D.E.1
-
47
-
-
0025399116
-
Empirically guided software development using metric-based classification trees
-
A.A. Porter and R.W. Selby, Empirically Guided Software Development Using Metric-Based Classification Trees, IEEE Software 7(2) (1990), 46-54.
-
(1990)
IEEE Software
, vol.7
, Issue.2
, pp. 46-54
-
-
Porter, A.A.1
Selby, R.W.2
-
48
-
-
0006473387
-
Evaluating techniques for generating metric-based classification trees
-
A.A. Porter and R.W. Selby, Evaluating Techniques for Generating Metric-based Classification Trees, Journal of Systems Software (1990), 209-218.
-
(1990)
Journal of Systems Software
, pp. 209-218
-
-
Porter, A.A.1
Selby, R.W.2
-
50
-
-
33744584654
-
Induction to decision trees
-
J.R. Quinlan, Induction to Decision Trees, Machine Learning 1 (1986), 81-106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
56
-
-
0032219074
-
Multiple Imputation for multivariate missing data problems: A data analyst's perspective
-
J.L. Schafer and M.K. Olsen, Multiple Imputation for multivariate missing data problems: a data analyst's perspective, Multivariate Behavioral Research 33(4) (1998), 545-571.
-
(1998)
Multivariate Behavioral Research
, vol.33
, Issue.4
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
57
-
-
85047673373
-
Missing data: Our view of the state of the art
-
J.L. Schafer and J.W. Graham, Missing data: Our view of the state of the art, Psychological Methods 7(2) (2002), 147-177.
-
(2002)
Psychological Methods
, vol.7
, Issue.2
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
58
-
-
0024123707
-
Learning from Examples: Generation and evaluation of decision trees for software resource analysis
-
R.W. Selby and A.A. Porter, Learning from Examples: Generation and Evaluation of Decision Trees for Software Resource Analysis, IEEE Trans on Soft Eng 14(12) (1988), 1743-1757.
-
(1988)
IEEE Trans on Soft Eng
, vol.14
, Issue.12
, pp. 1743-1757
-
-
Selby, R.W.1
Porter, A.A.2
-
62
-
-
0035481267
-
Software cost estimation with incomplete data
-
K. Strike, K.E. El-Emam and K.E., Madhavjim, Software Cost Estimation with Incomplete Data, IEEE Transaction on Software Engineering 27(10) (2001), 890-908.
-
(2001)
IEEE Transaction on Software Engineering
, vol.27
, Issue.10
, pp. 890-908
-
-
Strike, K.1
El-Emam, K.E.2
Madhavjim, K.E.3
-
63
-
-
17444371705
-
A short note on safest default missingness mechanism assumptions
-
Q. Song and M. Sheppered, A Short Note on Safest Default Missingness Mechanism Assumptions, Empirical Software Engineering 10(2) (2005), 235-243.
-
(2005)
Empirical Software Engineering
, vol.10
, Issue.2
, pp. 235-243
-
-
Song, Q.1
Sheppered, M.2
-
64
-
-
0029255026
-
Machine learning approaches to estimating software development effort
-
K. Srinivasan and D. Fisher, Machine Learning Approaches to Estimating Software Development Effort, IEEE Transaction on Software Engineering 21(2) (1995), 126-137.
-
(1995)
IEEE Transaction on Software Engineering
, vol.21
, Issue.2
, pp. 126-137
-
-
Srinivasan, K.1
Fisher, D.2
-
65
-
-
0001313875
-
Integrating time domain and input domain analyses of software reliability using tree-based models
-
J. Tian, Integrating Time Domain and Input Domain Analyses of Software Reliability Using Tree-Based Models, IEEE Transactions on Software Engineering 21(12) (1995), 945-958.
-
(1995)
IEEE Transactions on Software Engineering
, vol.21
, Issue.12
, pp. 945-958
-
-
Tian, J.1
-
66
-
-
0032027010
-
Analyzing and improving reliability: A tree-based approach
-
J. Tian and J. Palma, Analyzing and Improving Reliability: A Tree-based Approach, IEEE Software 15(2) (1998), 97-104.
-
(1998)
IEEE Software
, vol.15
, Issue.2
, pp. 97-104
-
-
Tian, J.1
Palma, J.2
-
67
-
-
67651230252
-
An empirical comparison of techniques handling incomplete data using decision trees
-
B. Twala, An Empirical Comparison of Techniques Handling Incomplete Data Using Decision Trees, Applied Artificial Intelligence 23(5) (2009), 373-405.
-
(2009)
Applied Artificial Intelligence
, vol.23
, Issue.5
, pp. 373-405
-
-
Twala, B.1
-
68
-
-
38049124826
-
-
Unpublished P.hD. Dissetation, Open University, Milton Keynes, UK
-
B. Twala, Effective Techniques for Handling Incomplete Data Using Decision Trees, Unpublished P.hD. Dissetation, Open University, Milton Keynes, UK, 2005.
-
(2005)
Effective Techniques for Handling Incomplete Data Using Decision Trees
-
-
Twala, B.1
-
69
-
-
40849140610
-
Good methods for coping with missing data in decision trees
-
B. Twala, M.C. Jones and D.J. Hand, Good methods for coping with missing data in decision trees, Pattern Recognition Letters 29 (2008), 950-956.
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 950-956
-
-
Twala, B.1
Jones, M.C.2
Hand, D.J.3
-
70
-
-
38049110017
-
Classifying incomplete software engineering data using decision trees: An improved probabilistic approach
-
November, Dallas, TX, USA
-
B. Twala, M. Cartwright and G. Liebchen, Classifying Incomplete Software Engineering Data Using Decision Trees: An Improved Probabilistic Approach, In Proceedings of Software Engineering Applications, November 13-15, 2006, Dallas, TX, USA.
-
(2006)
Proceedings of Software Engineering Applications
, pp. 13-15
-
-
Twala, B.1
Cartwright, M.2
Liebchen, G.3
-
71
-
-
33749052909
-
Comparison of various methods for handling incomplete data in software engineering databases
-
Noosa Heads, Australia, November
-
B. Twala, M.H. Cartwright and M. Shepperd, Comparison of Various Methods for Handling Incomplete Data in Software Engineering Databases, In Proceedings of the 4th International Symposium on Empirical Software Engineering, Noosa Heads, Australia, November 2005.
-
(2005)
Proceedings of the 4th International Symposium on Empirical Software Engineering
-
-
Twala, B.1
Cartwright, M.H.2
Shepperd, M.3
-
74
-
-
0028443213
-
Bias in information-based measures in decision tree induction
-
A.P. White and W.Z. Liu, Bias in information-based measures in decision tree induction, Machine Leaning 15 (1994), 321-329.
-
(1994)
Machine Leaning
, vol.15
, pp. 321-329
-
-
White, A.P.1
Liu, W.Z.2
|