메뉴 건너뛰기




Volumn 31, Issue 3, 2010, Pages 210-225

Interventions in INGARCH processes

Author keywords

Generalized linear models; Level shifts; Observation driven models; Outliers; Parametric bootstrap, transient shifts

Indexed keywords


EID: 77953417495     PISSN: 01439782     EISSN: 14679892     Source Type: Journal    
DOI: 10.1111/j.1467-9892.2010.00657.x     Document Type: Article
Times cited : (105)

References (27)
  • 1
    • 0043109071 scopus 로고
    • Generalized score tests for composite hypotheses
    • New York, Oxford University Press
    • Basawa I V. Generalized score tests for composite hypotheses. Estimating Functions 1991, 121-31. In, New York, Oxford University Press, pp
    • (1991) Estimating Functions , pp. 121-131
    • Basawa, I.V.1
  • 2
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 1986, 31:307-27.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 3
    • 84950643380 scopus 로고
    • Intervention analysis with applications to economics and environmental problems
    • Box G E P, Tiao G C. Intervention analysis with applications to economics and environmental problems. Journal of the American Statistical Association 1975, 70:70-9.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 70-79
    • Box, G.E.P.1    Tiao, G.C.2
  • 4
    • 34250625621 scopus 로고    scopus 로고
    • Effect of outliers on the identification and estimation of GARCH models
    • Carnero A M, Peña D, Ruiz E. Effect of outliers on the identification and estimation of GARCH models. Journal of Time Series Analysis 2006, 28:471-97.
    • (2006) Journal of Time Series Analysis , vol.28 , pp. 471-497
    • Carnero, A.M.1    Peña, D.2    Ruiz, E.3
  • 5
    • 0024012372 scopus 로고
    • Estimation of time series parameters in the presence of outliers
    • Chang I, Tiao G C, Chen C. Estimation of time series parameters in the presence of outliers. Technometrics 1988, 30:193-204.
    • (1988) Technometrics , vol.30 , pp. 193-204
    • Chang, I.1    Tiao, G.C.2    Chen, C.3
  • 6
    • 14544277096 scopus 로고    scopus 로고
    • Outliers and GARCH models in financial data
    • Charles A, Darnè O. Outliers and GARCH models in financial data. Economic Letters 2005, 86:347-52.
    • (2005) Economic Letters , vol.86 , pp. 347-352
    • Charles, A.1    Darnè, O.2
  • 7
    • 21144473917 scopus 로고
    • Joint estimation of model parameters and outlier effects in time series
    • Chen C, Liu L-M. Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association 1993, 88:284-97.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 284-297
    • Chen, C.1    Liu, L.-M.2
  • 8
    • 0002837834 scopus 로고
    • Statistical analysis of time series: some recent developments
    • Cox D R. Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics 1981, 8:93-115.
    • (1981) Scandinavian Journal of Statistics , pp. 93-115
    • Cox, D.R.1
  • 9
    • 84945952294 scopus 로고
    • The identification of multiple outliers. Invited paper with discussion and reply
    • Davis P L, Gather U. The identification of multiple outliers. Invited paper with discussion and reply. Journal of the American Statistical Association 1993, 88:782-92.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 782-792
    • Davis, P.L.1    Gather, U.2
  • 10
  • 12
    • 1642587239 scopus 로고    scopus 로고
    • Partial likelihood inference for time series following generalized linear models
    • Fokianos K, Kedem B. Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis 2004, 25:173-97.
    • (2004) Journal of Time Series Analysis , vol.25 , pp. 173-197
    • Fokianos, K.1    Kedem, B.2
  • 15
    • 33646168575 scopus 로고    scopus 로고
    • The identification of multiple outliers in online monitoring data
    • Gather U, Bauer M, Fried R. The identification of multiple outliers in online monitoring data. Estadística 2002, 54:289-338.
    • (2002) Estadística , vol.54 , pp. 289-338
    • Gather, U.1    Bauer, M.2    Fried, R.3
  • 16
    • 33847178045 scopus 로고    scopus 로고
    • Modelling time series count data: an autoregressive conditional poisson model
    • MPRA Paper 8113, University Library of Munich, Germany. Available at
    • Heinen A. Modelling time series count data: an autoregressive conditional poisson model. 2003, http://mpra.ub.uni-muenchen.de/8113/, MPRA Paper 8113, University Library of Munich, Germany. Available at
    • (2003)
    • Heinen, A.1
  • 18
    • 0346405510 scopus 로고    scopus 로고
    • Detection of outlier patches in autoregressive time series
    • Justel A, Peña D, R Tsay. Detection of outlier patches in autoregressive time series. Statistica Sinica 2001, 11:651-73.
    • (2001) Statistica Sinica , vol.11 , pp. 651-673
    • Justel, A.1    Peña, D.2
  • 20
    • 0028301452 scopus 로고
    • Time series models based on generalized linear models: some further results
    • Li W K. Time series models based on generalized linear models: some further results. Biometrics 1994, 50:506-11.
    • (1994) Biometrics , vol.50 , pp. 506-511
    • Li, W.K.1
  • 22
    • 1842607847 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computing, 3-900051-07-0
    • R: A language and environment for statistical computing 2004, Vienna, Austria, R Foundation for Statistical Computing, 3-900051-07-0
    • (2004) R: A language and environment for statistical computing
  • 23
    • 18544390798 scopus 로고    scopus 로고
    • A modeling framework for the prices and times of trades on the New York stock exchange
    • Fitzgerlad W J, Smith R L, Walden A T, Young P C. eds, Cambridge, Isaac Newton Institute and Cambridge University Press
    • Rydberg T H, Shephard N. A modeling framework for the prices and times of trades on the New York stock exchange. Nonlinear and Nonstationary Signal Processing 2000, 217-46. Fitzgerlad W J, Smith R LWalden A TYoung P C. In, eds, Cambridge, Isaac Newton Institute and Cambridge University Press, pp
    • (2000) Nonlinear and Nonstationary Signal Processing , pp. 217-246
    • Rydberg, T.H.1    Shephard, N.2
  • 25
    • 0000875323 scopus 로고
    • Time series model specification in the presence of outliers
    • Tsay R S. Time series model specification in the presence of outliers. Journal of the American Statistical Association 1986, 81:132-41.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 132-141
    • Tsay, R.S.1
  • 27
    • 0024204207 scopus 로고
    • Markov regression models for time series: a quasi-likelihood approach
    • Zeger S L, Qaqish B. Markov regression models for time series: a quasi-likelihood approach. Biometrics 1988, 44:1019-31.
    • (1988) Biometrics , vol.44 , pp. 1019-1031
    • Zeger, S.L.1    Qaqish, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.