메뉴 건너뛰기




Volumn 22, Issue 4, 2010, Pages 831-886

Efficient learning and feature selection in high-dimensional regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; HUMAN; LEARNING; PHYSIOLOGY; STATISTICAL MODEL;

EID: 77953353840     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.02-08-702     Document Type: Article
Times cited : (24)

References (54)
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 85004844353 scopus 로고
    • Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables
    • Derksen, S., & Keselman, H. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45, 265-282.
    • (1992) British Journal of Mathematical and Statistical Psychology , vol.45 , pp. 265-282
    • Derksen, S.1    Keselman, H.2
  • 7
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. Touretzty (Ed.) 2. Cambridge, MA: MIT Press
    • Fahlman, S.E., & Lebiere, C. (1989). The cascade-correlation learning architecture. In D. Touretzty (Ed.), Advances in neural information processing systems, 2. Cambridge, MA: MIT Press.
    • (1989) Advances in neural information processing systems
    • Fahlman, S.E.1    Lebiere, C.2
  • 9
    • 84952149204 scopus 로고
    • A statistical view of some chemometric regression tools
    • Frank, I., & Friedman, J. (1993). A statistical view of some chemometric regression tools. Technometrics, 35, 109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.1    Friedman, J.2
  • 14
    • 1542559558 scopus 로고    scopus 로고
    • Graphical models and variational methods
    • D. Saad & M. Opper (Eds.) Cambridge, MA: MIT Press
    • Ghahramani, Z., & Beal, M. (2000a). Graphical models and variational methods. In D. Saad & M. Opper (Eds.), Advanced mean field methods: Theory and practice. Cambridge, MA: MIT Press.
    • (2000) Advanced mean field methods: Theory and practice
    • Ghahramani, Z.1    Beal, M.2
  • 15
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analyzers
    • S. A. Solla, T.K. Leen, & K.-R. Müller (Eds.), 12 Cambridge, MA: MIT Press
    • Ghahramani, Z., & Beal, M.J. (2000b). Variational inference for Bayesian mixtures of factor analyzers. In S.A. Solla, T.K. Leen, & K.-R. M̈ uller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (2000) Advances in neural information processing systems
    • Ghahramani, Z.1    Beal, M.J.2
  • 18
    • 84899027721 scopus 로고    scopus 로고
    • N-body problems in statistical learning
    • T. K. Leen, T.G. Dietterich, & V. Tresp (Eds.), 13 Cambridge, MA:MIT Press
    • Gray, A.G., & Moore, A. (2001). N-body problems in statistical learning. In T.K. Leen, T.G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13. Cambridge, MA:MIT Press.
    • (2001) Advances in neural information processing systems
    • Gray, A.G.1    Moore, A.2
  • 21
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola, T.S., & Jordan, M.I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1), 25-37.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 22
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • Jeffreys, H. (1946).An invariant form for the prior probability in estimation problems. Journal of the Royal Statistical Society. Series A, 186, 453-461.
    • (1946) Journal of the Royal Statistical Society. Series A , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 23
    • 0032822129 scopus 로고    scopus 로고
    • Muscle and movement representations in the primary motor cortex
    • Kakei, S., Hoffman, D., & Strick, P. (1999). Muscle and movement representations in the primary motor cortex. Science, 285, 2136-2139.
    • (1999) Science , vol.285 , pp. 2136-2139
    • Kakei, S.1    Hoffman, D.2    Strick, P.3
  • 26
    • 26944467334 scopus 로고    scopus 로고
    • A dynamic adaptation of AD-trees for efficient machine learning on large data sets
    • San Francisco: Morgan Kaufmann
    • Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient machine learning on large data sets. In Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann.
    • (2000) Proceedings of the 17th International Conference on Machine Learning
    • Komarek, P.1    Moore, A.2
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Piscataway, NJ: IEEE
    • Lecun, Y., Bottou, A., Bengio, Y., &Haffner, P. (1998).Gradient-based learning applied to document recognition. In Proceedings of the IEEE. Piscataway, NJ: IEEE.
    • (1998) Proceedings of the IEEE
    • Lecun, Y.1    Bottou, A.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 1242318326 scopus 로고    scopus 로고
    • South Adelaide: Department of Statistics, University of South Adelaide, South Australia, Australia
    • Lokhorst, J. (1999). The LASSO and generalized linear models (Tech, Rep.). South Adelaide: Department of Statistics, University of South Adelaide, South Australia, Australia.
    • (1999) The LASSO and generalized linear models (Tech, Rep.)
    • Lokhorst, J.1
  • 31
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • MacKay, D.J.C. (1999). Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5), 1035-1068.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 32
    • 0000957593 scopus 로고
    • Principal component regression in exploratory statistical research
    • Massey, W. (1965). Principal component regression in exploratory statistical research. Journal of the American Statistical Association, 60, 234-246.
    • (1965) Journal of the American Statistical Association , vol.60 , pp. 234-246
    • Massey, W.1
  • 33
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high dimensional data
    • C. Boutilier & M. Goldszmidt (Eds.) San Francisco: Morgan Kaufmann
    • Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence (pp. 397-405). San Francisco: Morgan Kaufmann.
    • (2000) Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence , pp. 397-405
    • Moore, A.1
  • 34
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • Moore, A., & Lee, M.S. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67-91.
    • (1998) Journal of Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.1    Lee, M.S.2
  • 35
    • 0003611509 scopus 로고
    • Unpublished doctoral dissertation, University of Toronto
    • Neal, R. (1994). Bayesian learning for neural networks. Unpublished doctoral dissertation, University of Toronto.
    • (1994) Bayesian learning for neural networks
    • Neal, R.1
  • 37
    • 0003241739 scopus 로고
    • Bumptrees for efficient function, constraint and classification learning
    • D. Touretzky&R. Lippmann (Eds.), 3 Cambridge, MA:MIT Press
    • Omohundro, S.M. (1990). Bumptrees for efficient function, constraint and classification learning. InD. Touretzky&R. Lippmann (Eds.), Advances in neural information processing systems, 3. Cambridge, MA:MIT Press.
    • (1990) Advances in neural information processing systems
    • Omohundro, S.M.1
  • 43
    • 0031790064 scopus 로고    scopus 로고
    • Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task
    • Sergio, L., & Kalaska, J. (1998). Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. Journal of Neurophysiology, 80, 1577-1583.
    • (1998) Journal of Neurophysiology , vol.80 , pp. 1577-1583
    • Sergio, L.1    Kalaska, J.2
  • 44
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S., & Keerthi, S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17), 2246-2253.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 47
  • 48
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 49
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping, M.E., &Bishop, C.M. (1999).Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2), 443-482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 50
    • 14344264768 scopus 로고    scopus 로고
    • Fast marginal likelihood maximisation for sparse Bayesian methods
    • C. M. Bishop & B. J. Frey (Eds.) N.p.: Society for Artificial Intelligence and Statistics
    • Tipping, M.E., & Faul, A.C. (2003). Fast marginal likelihood maximisation for sparse Bayesian methods. In C.M. Bishop & B.J. Frey (Eds.), Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics. N.p.: Society for Artificial Intelligence and Statistics.
    • (2003) Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics
    • Tipping, M.E.1    Faul, A.C.2
  • 51
    • 0002891388 scopus 로고    scopus 로고
    • Locally weighted projection regression: Incremental real time learning in high dimensional space
    • San Francisco:Morgan Kaufmann
    • Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: Incremental real time learning in high dimensional space. In Proceedings of the 17th International Conference onMachine Learning (pp. 1079-1086). San Francisco:Morgan Kaufmann.
    • (2000) Proceedings of the 17th International Conference onMachine Learning , pp. 1079-1086
    • Vijayakumar, S.1    Schaal, S.2
  • 52
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • Wang, L., Zhu, J., & Zou, H. (2006). The doubly regularized support vector machine. Statistica Sinica, 16, 589-615.
    • (2006) Statistica Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 53
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M.C. Mozer, & M. E. Hasselmo (Eds.), 8 Cambridge, MA: MIT Press
    • Williams, C.K.I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural information processing systems, 8. Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing systems
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 54
    • 0002692783 scopus 로고
    • Soft modeling by latent variables: The nonlinear iterative partial least squares approach
    • J. Gani (Ed.) London: Academic Press
    • Wold, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial least squares approach. In J. Gani (Ed.), Perspectives in probability and statistics: Papers in honor of M.S. Bartlett. London: Academic Press.
    • (1975) Perspectives in probability and statistics: Papers in honor of M. S. Bartlett.
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.