-
3
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
85004844353
-
Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables
-
Derksen, S., & Keselman, H. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45, 265-282.
-
(1992)
British Journal of Mathematical and Statistical Psychology
, vol.45
, pp. 265-282
-
-
Derksen, S.1
Keselman, H.2
-
5
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, L., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407-499.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, L.3
Tibshirani, R.4
-
7
-
-
0000155950
-
The cascade-correlation learning architecture
-
D. Touretzty (Ed.) 2. Cambridge, MA: MIT Press
-
Fahlman, S.E., & Lebiere, C. (1989). The cascade-correlation learning architecture. In D. Touretzty (Ed.), Advances in neural information processing systems, 2. Cambridge, MA: MIT Press.
-
(1989)
Advances in neural information processing systems
-
-
Fahlman, S.E.1
Lebiere, C.2
-
8
-
-
0023997320
-
Parameter estimation of superimposed signals using the EM algorithm
-
Feder, M., &Weinstein, E. (1988). Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(4), 477-490.
-
(1988)
IEEE Transactions on Acoustics, Speech and Signal Processing
, vol.36
, Issue.4
, pp. 477-490
-
-
Feder, M.1
Weinstein, E.2
-
9
-
-
84952149204
-
A statistical view of some chemometric regression tools
-
Frank, I., & Friedman, J. (1993). A statistical view of some chemometric regression tools. Technometrics, 35, 109-135.
-
(1993)
Technometrics
, vol.35
, pp. 109-135
-
-
Frank, I.1
Friedman, J.2
-
10
-
-
84945709355
-
An algorithm for finding best matches in logarithmic expected time
-
Friedman, J.H., Bentley, J.L., & Finkel, R.A. (1977). An algorithm for finding best matches in logarithmic expected time. ACM Transactions onMathematical Software, 3, 209-226.
-
(1977)
ACM Transactions onMathematical Software
, vol.3
, pp. 209-226
-
-
Friedman, J.H.1
Bentley, J.L.2
Finkel, R.A.3
-
11
-
-
45849107328
-
-
(Tech. Rep.). Stanford, CA: Department of Statistics, Stanford University
-
Friedman, J., Hastie, T., & Tibshirani, R. (2007). Pathwise coordinate optimization (Tech. Rep.). Stanford, CA: Department of Statistics, Stanford University.
-
(2007)
Pathwise coordinate optimization
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
34547965764
-
-
(Tech. Rep.). Berkeley: Department of Statistics, University of California, Berkeley
-
Fukumizu, K., Bach, F.R., & Jordan, M.I. (2006). Kernel dimensionality reduction in regression (Tech. Rep.). Berkeley: Department of Statistics, University of California, Berkeley.
-
(2006)
Kernel dimensionality reduction in regression
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
13
-
-
0004012196
-
-
London: Chapman and Hall
-
Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2000). Bayesian data analysis. London: Chapman and Hall.
-
(2000)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.2
Stern, H.3
Rubin, D.4
-
14
-
-
1542559558
-
Graphical models and variational methods
-
D. Saad & M. Opper (Eds.) Cambridge, MA: MIT Press
-
Ghahramani, Z., & Beal, M. (2000a). Graphical models and variational methods. In D. Saad & M. Opper (Eds.), Advanced mean field methods: Theory and practice. Cambridge, MA: MIT Press.
-
(2000)
Advanced mean field methods: Theory and practice
-
-
Ghahramani, Z.1
Beal, M.2
-
15
-
-
84898934543
-
Variational inference for Bayesian mixtures of factor analyzers
-
S. A. Solla, T.K. Leen, & K.-R. Müller (Eds.), 12 Cambridge, MA: MIT Press
-
Ghahramani, Z., & Beal, M.J. (2000b). Variational inference for Bayesian mixtures of factor analyzers. In S.A. Solla, T.K. Leen, & K.-R. M̈ uller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
-
(2000)
Advances in neural information processing systems
-
-
Ghahramani, Z.1
Beal, M.J.2
-
18
-
-
84899027721
-
N-body problems in statistical learning
-
T. K. Leen, T.G. Dietterich, & V. Tresp (Eds.), 13 Cambridge, MA:MIT Press
-
Gray, A.G., & Moore, A. (2001). N-body problems in statistical learning. In T.K. Leen, T.G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13. Cambridge, MA:MIT Press.
-
(2001)
Advances in neural information processing systems
-
-
Gray, A.G.1
Moore, A.2
-
20
-
-
0001412716
-
Bayesian backfitting
-
Hastie, T., & Tibshirani, R. (2000). Bayesian backfitting. Statistical Science, 15(3), 196-223.
-
(2000)
Statistical Science
, vol.15
, Issue.3
, pp. 196-223
-
-
Hastie, T.1
Tibshirani, R.2
-
21
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
Jaakkola, T.S., & Jordan, M.I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1), 25-37.
-
(2000)
Statistics and Computing
, vol.10
, Issue.1
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
22
-
-
84873751778
-
An invariant form for the prior probability in estimation problems
-
Jeffreys, H. (1946).An invariant form for the prior probability in estimation problems. Journal of the Royal Statistical Society. Series A, 186, 453-461.
-
(1946)
Journal of the Royal Statistical Society. Series A
, vol.186
, pp. 453-461
-
-
Jeffreys, H.1
-
23
-
-
0032822129
-
Muscle and movement representations in the primary motor cortex
-
Kakei, S., Hoffman, D., & Strick, P. (1999). Muscle and movement representations in the primary motor cortex. Science, 285, 2136-2139.
-
(1999)
Science
, vol.285
, pp. 2136-2139
-
-
Kakei, S.1
Hoffman, D.2
Strick, P.3
-
24
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
Keerthi, S.S., Chapelle, O., & DeCoste, D. (2006). Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7, 1493-1515.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
25
-
-
39449109476
-
A method for large-scale l1-regularized least squares
-
Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). A method for large-scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing, 1(4), 606-617.
-
(2007)
IEEE Journal on Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 606-617
-
-
Kim, S.J.1
Koh, K.2
Lustig, M.3
Boyd, S.4
Gorinevsky, D.5
-
27
-
-
21244437589
-
Sparse multinomial logistic regression: Fast algorithms and generalization bounds
-
Krishnapuram, B., Carin, L., Figueiredo, M.A., & Hartemink, A.J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 957-968.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M.A.3
Hartemink, A.J.4
-
28
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Piscataway, NJ: IEEE
-
Lecun, Y., Bottou, A., Bengio, Y., &Haffner, P. (1998).Gradient-based learning applied to document recognition. In Proceedings of the IEEE. Piscataway, NJ: IEEE.
-
(1998)
Proceedings of the IEEE
-
-
Lecun, Y.1
Bottou, A.2
Bengio, Y.3
Haffner, P.4
-
29
-
-
33750695296
-
Efficient L1-regularized logistic regresssion
-
Menlo Park, CA: AAAI Press
-
Lee, S., Lee, H., Abbeel, P., & Ng, A. (2006). Efficient L1-regularized logistic regresssion. In Proceedings of the 21st National Conference on Artificial Intelligence: Menlo Park, CA: AAAI Press.
-
(2006)
Proceedings of the 21st National Conference on Artificial Intelligence
-
-
Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.4
-
30
-
-
1242318326
-
-
South Adelaide: Department of Statistics, University of South Adelaide, South Australia, Australia
-
Lokhorst, J. (1999). The LASSO and generalized linear models (Tech, Rep.). South Adelaide: Department of Statistics, University of South Adelaide, South Australia, Australia.
-
(1999)
The LASSO and generalized linear models (Tech, Rep.)
-
-
Lokhorst, J.1
-
31
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
MacKay, D.J.C. (1999). Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5), 1035-1068.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1035-1068
-
-
MacKay, D.J.C.1
-
32
-
-
0000957593
-
Principal component regression in exploratory statistical research
-
Massey, W. (1965). Principal component regression in exploratory statistical research. Journal of the American Statistical Association, 60, 234-246.
-
(1965)
Journal of the American Statistical Association
, vol.60
, pp. 234-246
-
-
Massey, W.1
-
33
-
-
1942419246
-
The anchors hierarchy: Using the triangle inequality to survive high dimensional data
-
C. Boutilier & M. Goldszmidt (Eds.) San Francisco: Morgan Kaufmann
-
Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence (pp. 397-405). San Francisco: Morgan Kaufmann.
-
(2000)
Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence
, pp. 397-405
-
-
Moore, A.1
-
34
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
Moore, A., & Lee, M.S. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67-91.
-
(1998)
Journal of Artificial Intelligence Research
, vol.8
, pp. 67-91
-
-
Moore, A.1
Lee, M.S.2
-
35
-
-
0003611509
-
-
Unpublished doctoral dissertation, University of Toronto
-
Neal, R. (1994). Bayesian learning for neural networks. Unpublished doctoral dissertation, University of Toronto.
-
(1994)
Bayesian learning for neural networks
-
-
Neal, R.1
-
37
-
-
0003241739
-
Bumptrees for efficient function, constraint and classification learning
-
D. Touretzky&R. Lippmann (Eds.), 3 Cambridge, MA:MIT Press
-
Omohundro, S.M. (1990). Bumptrees for efficient function, constraint and classification learning. InD. Touretzky&R. Lippmann (Eds.), Advances in neural information processing systems, 3. Cambridge, MA:MIT Press.
-
(1990)
Advances in neural information processing systems
-
-
Omohundro, S.M.1
-
39
-
-
0342502195
-
Soft margins for AdaBoost
-
R̈atsh, G., Onoda, T., & M̈ uller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287-320.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsh, G.1
Onoda, T.2
Müller, K.R.3
-
42
-
-
0000940247
-
Local dimensionality reduction
-
M. Jordan, M. Kearns, & S. Solla (Eds.), 10 Cambridge, MA: MIT Press
-
Schaal, S., Vijayakumar, S., & Atkeson, C. (1998). Local dimensionality reduction. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
-
(1998)
Advances in neural information processing systems
-
-
Schaal, S.1
Vijayakumar, S.2
Atkeson, C.3
-
43
-
-
0031790064
-
Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task
-
Sergio, L., & Kalaska, J. (1998). Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. Journal of Neurophysiology, 80, 1577-1583.
-
(1998)
Journal of Neurophysiology
, vol.80
, pp. 1577-1583
-
-
Sergio, L.1
Kalaska, J.2
-
44
-
-
0345327592
-
A simple and efficient algorithm for gene selection using sparse logistic regression
-
Shevade, S., & Keerthi, S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17), 2246-2253.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2246-2253
-
-
Shevade, S.1
Keerthi, S.2
-
47
-
-
84864044059
-
Predicting EMG data from M1 neurons with variational Bayesian least squares
-
Y.Weiss, B. Schölkopf, & J. Platt (Eds.) Cambridge, MA: MIT Press
-
Ting, J., D'Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., et al. (2005). Predicting EMG data from M1 neurons with variational Bayesian least squares. In Y.Weiss, B. Scḧolkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18. Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems, 18
-
-
Ting, J.1
D'Souza, A.2
Yamamoto, K.3
Yoshioka, T.4
Hoffman, D.5
Kakei, S.6
-
48
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
49
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping, M.E., &Bishop, C.M. (1999).Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2), 443-482.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
50
-
-
14344264768
-
Fast marginal likelihood maximisation for sparse Bayesian methods
-
C. M. Bishop & B. J. Frey (Eds.) N.p.: Society for Artificial Intelligence and Statistics
-
Tipping, M.E., & Faul, A.C. (2003). Fast marginal likelihood maximisation for sparse Bayesian methods. In C.M. Bishop & B.J. Frey (Eds.), Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics. N.p.: Society for Artificial Intelligence and Statistics.
-
(2003)
Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics
-
-
Tipping, M.E.1
Faul, A.C.2
-
51
-
-
0002891388
-
Locally weighted projection regression: Incremental real time learning in high dimensional space
-
San Francisco:Morgan Kaufmann
-
Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: Incremental real time learning in high dimensional space. In Proceedings of the 17th International Conference onMachine Learning (pp. 1079-1086). San Francisco:Morgan Kaufmann.
-
(2000)
Proceedings of the 17th International Conference onMachine Learning
, pp. 1079-1086
-
-
Vijayakumar, S.1
Schaal, S.2
-
52
-
-
33746154240
-
The doubly regularized support vector machine
-
Wang, L., Zhu, J., & Zou, H. (2006). The doubly regularized support vector machine. Statistica Sinica, 16, 589-615.
-
(2006)
Statistica Sinica
, vol.16
, pp. 589-615
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
53
-
-
0002295913
-
Gaussian processes for regression
-
D. S. Touretzky, M.C. Mozer, & M. E. Hasselmo (Eds.), 8 Cambridge, MA: MIT Press
-
Williams, C.K.I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural information processing systems, 8. Cambridge, MA: MIT Press.
-
(1996)
Advances in neural information processing systems
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
54
-
-
0002692783
-
Soft modeling by latent variables: The nonlinear iterative partial least squares approach
-
J. Gani (Ed.) London: Academic Press
-
Wold, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial least squares approach. In J. Gani (Ed.), Perspectives in probability and statistics: Papers in honor of M.S. Bartlett. London: Academic Press.
-
(1975)
Perspectives in probability and statistics: Papers in honor of M. S. Bartlett.
-
-
Wold, H.1
|