-
1
-
-
48249125815
-
Total variation regularization for image denoising; I. Geometric Theory
-
W. Allard. Total variation regularization for image denoising; I. Geometric Theory. SIAM Journal on Mathematical Analysis, 39:1150-1190, 2007.
-
(2007)
SIAM Journal on Mathematical Analysis
, vol.39
, pp. 1150-1190
-
-
Allard, W.1
-
2
-
-
77953339369
-
Total variation regularization for image denoising; II. Examples
-
W. Allard. Total variation regularization for image denoising; II. Examples. submitted, 2008.
-
(2008)
submitted
-
-
Allard, W.1
-
3
-
-
77953339369
-
Total variation regularization for image denoising; III. Examples
-
W. Allard. Total variation regularization for image denoising; III. Examples. Submitted, 2008.
-
(2008)
Submitted
-
-
Allard, W.1
-
4
-
-
0031124308
-
A property of the minimum vectors of a regularizing functional defined by means of the absolute norm
-
S. Alliney. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process., 45:913-917, 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, pp. 913-917
-
-
Alliney, S.1
-
5
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
6
-
-
27844461945
-
Aspects of total variation regularized L1 function approximation
-
T. Chan and S. Esedoglu. Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math., 65(5):1817-1837, 2005.
-
(2005)
SIAM J. Appl. Math.
, vol.65
, Issue.5
, pp. 1817-1837
-
-
Chan, T.1
Esedoglu, S.2
-
9
-
-
0003418232
-
-
Classics in Mathematics. Springer-Verlag
-
H. Federer. Geometric Measure Theory. Classics in Mathematics. Springer-Verlag, 1969.
-
(1969)
Geometric Measure Theory
-
-
Federer, H.1
-
13
-
-
34547226078
-
1TV computes the flat norm for boundaries
-
Article ID 45153, doi:10.1155/2007/45153
-
1TV computes the flat norm for boundaries. Abstract and Applied Analysis, 2007:Article ID 45153, 14 pages, 2007. doi:10.1155/2007/45153.
-
(2007)
Abstract and Applied Analysis
, vol.2007
, pp. 14
-
-
Morgan, S.1
Vixie, K.2
-
14
-
-
0038042413
-
Minimizers of cost-functions involving nonsmooth datafidelity terms
-
M. Nikolova. Minimizers of cost-functions involving nonsmooth datafidelity terms. SIAM J. Numer. Anal., 40:965-994, 2003.
-
(2003)
SIAM J. Numer. Anal.
, vol.40
, pp. 965-994
-
-
Nikolova, M.1
-
15
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
November
-
L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-4):259-268, November 1992.
-
(1992)
Physica D
, vol.60
, Issue.1-4
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
16
-
-
77953349106
-
1TV functional
-
Oct
-
K. Vixie. Some properties of minimizers for the Chan-Esedog̈lu L1TV functional. arXiv.org, Oct 2007.
-
(2007)
arXiv.org
-
-
Vixie, K.1
|