메뉴 건너뛰기




Volumn 28, Issue 2, 2010, Pages 229-245

Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type

Author keywords

Firing reset; Integrate and fire; Lyapunov exponents; Non smooth; Refractory induced degeneracy

Indexed keywords

DIFFERENTIAL EQUATIONS; DYNAMICAL SYSTEMS; LYAPUNOV FUNCTIONS; LYAPUNOV METHODS; NEURAL NETWORKS; NEURONS; NUMERICAL METHODS; REFRACTORY MATERIALS;

EID: 77953324824     PISSN: 09295313     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10827-009-0201-3     Document Type: Article
Times cited : (26)

References (65)
  • 1
    • 0001521352 scopus 로고
    • Nonchaotic transition from quasiperiodicity to complete phase locking
    • Alstrom, P., Christiansen, B., & Levinsen, M. T. (1988). Nonchaotic transition from quasiperiodicity to complete phase locking. Physical Review Letters, 61, 1679-1682.
    • (1988) Physical Review Letters , vol.61 , pp. 1679-1682
    • Alstrom, P.1    Christiansen, B.2    Levinsen, M.T.3
  • 2
    • 0033559399 scopus 로고    scopus 로고
    • Cellular mechanisms contributing to response variability of cortical neurons in vivo
    • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209-2223.
    • (1999) Journal of Neuroscience , vol.19 , pp. 2209-2223
    • Azouz, R.1    Gray, C.M.2
  • 3
    • 0018989294 scopus 로고
    • LYAPUNOV CHARACTERISTIC EXPONENTS FOR SMOOTH DYNAMICAL SYSTEMS AND FOR HAMILTONIAN SYSTEMS; A METHOD FOR COMPUTING ALL OF THEM - 1. THEORY.
    • Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J. M. (1980a). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them, Part I: Theory. Meccanica, 15, 9-20. (Pubitemid 11453346)
    • (1980) Meccanica , vol.15 , Issue.1 , pp. 9-20
    • Benettin Giancarlo1    Galgani Luigi2    Giorgilli Antonio3    Strelcyn Jean Marie4
  • 4
    • 0018992908 scopus 로고
    • LYAPUNOV CHARACTERISTIC EXPONENTS FOR SMOOTH DYNAMICAL SYSTEMS AND FOR HAMILTONIAN SYSTEMS; A METHOD FOR COMPUTING ALL OF THEM - 2. NUMERICAL APPLICATION.
    • Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J. M. (1980b). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them, Part II: Numerical application. Meccanica, 15, 21-30. (Pubitemid 11453347)
    • (1980) Meccanica , vol.15 , Issue.1 , pp. 21-30
    • Benettin Giancarlo1    Galgani Luigi2    Giorgilli Antonio3    Strelcyn Jean Marie4
  • 5
    • 6044269695 scopus 로고    scopus 로고
    • Dynamics of one-dimensional spiking neuron models
    • Brette, R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of Mathematical Biology, 48, 38-56.
    • (2004) Journal of Mathematical Biology , vol.48 , pp. 38-56
    • Brette, R.1
  • 6
    • 27144498986 scopus 로고    scopus 로고
    • Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Mathematical Biology, 94, 3637-3642.
    • (2005) Journal of Mathematical Biology , vol.94 , pp. 3637-3642
    • Brette, R.1    Gerstner, W.2
  • 7
    • 33745712258 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input
    • Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics, 95, 1-19.
    • (2006) Biological Cybernetics , vol.95 , pp. 1-19
    • Burkitt, A.N.1
  • 8
    • 33745730999 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties
    • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biological Cybernetics, 95, 97-112.
    • (2006) Biological Cybernetics , vol.95 , pp. 97-112
    • Burkitt, A.N.1
  • 12
    • 0035879280 scopus 로고    scopus 로고
    • Negative interspike interval correlations increase the neuronal capacity for encoding time dependent stimuli
    • Chacron, M. J., Longtin, A., & Maler, L. (2001a). Negative interspike interval correlations increase the neuronal capacity for encoding time dependent stimuli. Journal of Neuroscience, 21, 5328-5343.
    • (2001) Journal of Neuroscience , vol.21 , pp. 5328-5343
    • Chacron, M.J.1    Longtin, A.2    Maler, L.3
  • 13
    • 18744421079 scopus 로고    scopus 로고
    • Simple models of bursting and non-bursting P-type electroreceptors
    • Chacron, M. J., Longtin, A., & Maler, L. (2001b). Simple models of bursting and non-bursting P-type electroreceptors. Neurocomputing, 38, 129-139.
    • (2001) Neurocomputing , vol.38 , pp. 129-139
    • Chacron, M.J.1    Longtin, A.2    Maler, L.3
  • 14
    • 1842842200 scopus 로고    scopus 로고
    • Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue
    • Chacron, M. J., Longtin, A., & Pakdaman, K. (2004). Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue. Physica D, 192, 138-160.
    • (2004) Physica D , vol.192 , pp. 138-160
    • Chacron, M.J.1    Longtin, A.2    Pakdaman, K.3
  • 15
    • 0034238119 scopus 로고    scopus 로고
    • Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors
    • Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85, 1576-1579.
    • (2000) Physical Review Letters , vol.85 , pp. 1576-1579
    • Chacron, M.J.1    Longtin, A.2    St-Hilaire, M.3    Maler, L.4
  • 16
    • 0037313080 scopus 로고    scopus 로고
    • Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue
    • Chacron, M. J., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15, 253-276.
    • (2003) Neural Computation , vol.15 , pp. 253-276
    • Chacron, M.J.1    Pakdaman, K.2    Longtin, A.3
  • 18
    • 0035450756 scopus 로고    scopus 로고
    • Basins of attraction and transient chaos in a gear-rattling model
    • de Souza, S. L. T., & Caldas, I. L. (2001). Basins of attraction and transient chaos in a gear-rattling model. Journal of Vibration and Control, 7, 849-862.
    • (2001) Journal of Vibration and Control , vol.7 , pp. 849-862
    • De Souza, S.L.T.1    Caldas, I.L.2
  • 19
    • 0041629308 scopus 로고    scopus 로고
    • Calculation of lyapunov exponents in systems with impacts
    • de Souza, S. L. T., & Caldas, I. L. (2004). Calculation of Lyapunov exponents in systems with impacts. Chaos, Solitons & Fractals, 19, 569-579.
    • (2004) Chaos, Solitons & Fractals , vol.19 , pp. 569-579
    • De Souza, S.L.T.1    Caldas, I.L.2
  • 20
    • 35949018382 scopus 로고
    • Ergodic theory of chaos and strange attractors
    • Eckmann, J. P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617-656.
    • (1985) Reviews of Modern Physics , vol.57 , pp. 617-656
    • Eckmann, J.P.1    Ruelle, D.2
  • 21
    • 48749145669 scopus 로고
    • The dimension of chaotic attractors
    • Farmer, J. D., Ott, E., & Yorke, J. A. (1983). The dimension of chaotic attractors. Physica D, 7, 153-180.
    • (1983) Physica D , vol.7 , pp. 153-180
    • Farmer, J.D.1    Ott, E.2    Yorke, J.A.3
  • 22
    • 0347694858 scopus 로고    scopus 로고
    • How spike generation mechanisms determine the neuronal response to fluctuating inputs
    • Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628-11640.
    • (2003) Journal of Neuroscience , vol.23 , pp. 11628-11640
    • Fourcaud-Trocme, N.1    Hansel, D.2    Van Vreeswijk, C.3    Brunel, N.4
  • 24
    • 0002256723 scopus 로고
    • Stability theory of synchronized motion in coupled-oscillator systems
    • Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32-47.
    • (1983) Progress of Theoretical Physics , vol.69 , pp. 32-47
    • Fujisaka, H.1    Yamada, T.2
  • 25
    • 28044433619 scopus 로고    scopus 로고
    • Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges
    • Geisler, C., Brunel, N., & Wang, X. J. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of Neurophysiology, 94, 4344-4361.
    • (2005) Journal of Neurophysiology , vol.94 , pp. 4344-4361
    • Geisler, C.1    Brunel, N.2    Wang, X.J.3
  • 29
    • 0034663326 scopus 로고    scopus 로고
    • Postsynaptic variability of firing in rat cortical neurons: The roles of input synchronization and synaptic NMDA receptor conductance
    • Harsch, A., & Robinson, H. P. (2000). Postsynaptic variability of firing in rat cortical neurons: The roles of input synchronization and synaptic NMDA receptor conductance. Journal of Neuroscience, 20, 6181-6192.
    • (2000) Journal of Neuroscience , vol.20 , pp. 6181-6192
    • Harsch, A.1    Robinson, H.P.2
  • 30
    • 0000810560 scopus 로고    scopus 로고
    • Practical implementation of nonlinear time series methods: The TISEAN package
    • Hegger, R., Kantz, H., & Schreiber, T. (1999). Practical implementation of nonlinear time series methods: The TISEAN package. Chaos, 9, 413-435.
    • (1999) Chaos , vol.9 , pp. 413-435
    • Hegger, R.1    Kantz, H.2    Schreiber, T.3
  • 32
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.
    • (1952) Journal of Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 33
    • 0004596352 scopus 로고    scopus 로고
    • Complex dynamics of neuronal thresholds
    • Horn, D., & Opher, I. (2000). Complex dynamics of neuronal thresholds. Neurocomputing, 32, 161-166.
    • (2000) Neurocomputing , vol.32 , pp. 161-166
    • Horn, D.1    Opher, I.2
  • 34
    • 0000248309 scopus 로고
    • Neural networks with dynamical thresholds
    • Horn, D., & Usher, M. (1989). Neural networks with dynamical thresholds. Physical Review A, 40, 1036-1044.
    • (1989) Physical Review A , vol.40 , pp. 1036-1044
    • Horn, D.1    Usher, M.2
  • 35
    • 0001870258 scopus 로고
    • A robust method to estimate the maximal lyapunov exponent of a time series
    • Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. Physics letters A, 185, 77-87.
    • (1994) Physics Letters A , vol.185 , pp. 77-87
    • Kantz, H.1
  • 38
    • 9644282920 scopus 로고    scopus 로고
    • Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron
    • Lindner, B., & Longtin, A. (2005). Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. Journal of Theoretical Biology, 232, 505-521.
    • (2005) Journal of Theoretical Biology , vol.232 , pp. 505-521
    • Lindner, B.1    Longtin, A.2
  • 39
    • 0035081994 scopus 로고    scopus 로고
    • Spike-frequency adaptation of a generalized integrate-and fire model neuron
    • Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized integrate-and fire model neuron. Journal of Computational Neuroscience, 10, 25-45.
    • (2001) Journal of Computational Neuroscience , vol.10 , pp. 25-45
    • Liu, Y.H.1    Wang, X.J.2
  • 40
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503-1506.
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.F.1    Sejnowski, T.J.2
  • 42
    • 0000442708 scopus 로고
    • Calculation of lyapunov exponents for dynamics systems with discontinuities
    • Mueller, P. C. (1995). Calculation of Lyapunov exponents for dynamics systems with discontinuities. Chaos, Solitons & Fractals, 5, 1671-1681.
    • (1995) Chaos, Solitons & Fractals , vol.5 , pp. 1671-1681
    • Mueller, P.C.1
  • 43
    • 0037340220 scopus 로고    scopus 로고
    • Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses
    • Nowak, L. G., Azouz, R., Sanchez-vives, M. V., Gray, C. M., & McCormick, D. A. (2003). Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 89, 1541-1566.
    • (2003) Journal of Neurophysiology , vol.89 , pp. 1541-1566
    • Nowak, L.G.1    Azouz, R.2    Sanchez-Vives, M.V.3    Gray, C.M.4    McCormick, D.A.5
  • 44
    • 0000543733 scopus 로고
    • A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems
    • Oseledec, V. I. (1968). A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Transactions of the Moscow Mathematical Society, 19, 197-221.
    • (1968) Transactions of the Moscow Mathematical Society , vol.19 , pp. 197-221
    • Oseledec, V.I.1
  • 45
  • 49
    • 0345849832 scopus 로고    scopus 로고
    • A comparative study of computation of lyapunov spectra with different algorithms
    • Ramasubramanian, K., & Seiram, M. S. (2000). A comparative study of computation of Lyapunov spectra with different algorithms. Physica D, 139, 72-86.
    • (2000) Physica D , vol.139 , pp. 72-86
    • Ramasubramanian, K.1    Seiram, M.S.2
  • 50
    • 33845912111 scopus 로고    scopus 로고
    • Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks
    • Rangan, A. V., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22, 81-100.
    • (2007) Journal of Computational Neuroscience , vol.22 , pp. 81-100
    • Rangan, A.V.1    Cai, D.2
  • 52
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrateand-fire neurons to in vivo-like input currents
    • Rauch, A., Camera, G. L., Luscher, H., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrateand-fire neurons to in vivo-like input currents. Journal of Neurophysiology, 90, 15980-1612.
    • (2003) Journal of Neurophysiology , vol.90 , pp. 15980-11612
    • Rauch, A.1    Camera, G.L.2    Luscher, H.3    Senn, W.4    Fusi, S.5
  • 53
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: Implications for connectivity, computation and information coding
    • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation and information coding. Journal of Neuroscience, 18, 3870-3896.
    • (1998) Journal of Neuroscience , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 54
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334-350.
    • (1993) Journal of Neuroscience , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 55
    • 0029160319 scopus 로고
    • An emergent model of orientation selectivity in cat visual cortical simple cells
    • Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448-5465.
    • (1995) Journal of Neuroscience , vol.15 , pp. 5448-5465
    • Somers, D.C.1    Nelson, S.B.2    Sur, M.3
  • 56
    • 0034559501 scopus 로고    scopus 로고
    • Estimation of the largest lyapunov exponent in systems with impacts
    • Stefanski, A. (2000). Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons & Fractals, 11, 2443-2451.
    • (2000) Chaos, Solitons & Fractals , vol.11 , pp. 2443-2451
    • Stefanski, A.1
  • 57
    • 0000960061 scopus 로고    scopus 로고
    • Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
    • Stefanski, A., & Kapitaniak, T. (2000). Using chaos synchronization to estimate the largest Lyapunov exponent of nonsmooth systems. Discrete Dynamics in Nature and Society, 4, 207-215.
    • (2000) Discrete Dynamics in Nature and Society , vol.4 , pp. 207-215
    • Stefanski, A.1    Kapitaniak, T.2
  • 58
    • 0041645137 scopus 로고    scopus 로고
    • Estimation of the dominant lyapunov exponent of non-smooth systems on the basis of maps synchronization
    • Stefanski, A., & Kapitaniak, T. (2003). Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization. Chaos, Solitons & Fractals, 15, 233-244.
    • (2003) Chaos, Solitons & Fractals , vol.15 , pp. 233-244
    • Stefanski, A.1    Kapitaniak, T.2
  • 60
    • 0020563088 scopus 로고
    • The statistical reliability of signals in single neurons in cat and monkey visual cortex
    • Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23, 775-785.
    • (1983) Vision Research , vol.23 , pp. 775-785
    • Tolhurst, D.J.1    Movshon, J.A.2    Dean, A.F.3
  • 61
    • 0032146788 scopus 로고    scopus 로고
    • Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity
    • Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908-5927.
    • (1998) Journal of Neuroscience , vol.18 , pp. 5908-5927
    • Troyer, T.W.1    Krukowski, A.E.2    Priebe, N.J.3    Miller, K.D.4
  • 62
    • 0029836487 scopus 로고    scopus 로고
    • Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model
    • Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402-6413.
    • (1996) Journal of Neuroscience , vol.16 , pp. 6402-6413
    • Wang, X.J.1    Buzsaki, G.2
  • 64
    • 0008494528 scopus 로고
    • Determining lyapunov exponents from a time series
    • Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining lyapunov exponents from a time series. Physica D, 16, 285-317.
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 65
    • 0028871511 scopus 로고
    • Potassium conductances underlying repolarization and after- hyperpolarization in rat CA1 hippocampal interneurones
    • Zhang, L., & McBain, C. J. (1995). Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. Journal of Physiology, 488, 661-672.
    • (1995) Journal of Physiology , vol.488 , pp. 661-672
    • Zhang, L.1    McBain, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.