-
1
-
-
33845768482
-
Birkhoff normal form for partial differential equations with tame modulus
-
D. Bambusi, B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J. 135, 507-567 (2006).
-
(2006)
Duke Math. J.
, vol.135
, pp. 507-567
-
-
Bambusi, D.1
Grébert, B.2
-
2
-
-
0032272850
-
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
-
J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. Math. 148, 363-439 (1998).
-
(1998)
Ann. Math.
, vol.148
, pp. 363-439
-
-
Bourgain, J.1
-
4
-
-
48349106445
-
Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations
-
D. Cohen, E. Hairer, C. Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math. 110, 113-143 (2008).
-
(2008)
Numer. Math.
, vol.110
, pp. 113-143
-
-
Cohen, D.1
Hairer, E.2
Lubich, C.3
-
5
-
-
37449013874
-
Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions
-
D. Cohen, E. Hairer, C. Lubich, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Ration. Mech. Anal. 187, 341-368 (2008).
-
(2008)
Arch. Ration. Mech. Anal.
, vol.187
, pp. 341-368
-
-
Cohen, D.1
Hairer, E.2
Lubich, C.3
-
6
-
-
36649004371
-
Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential
-
G. Dujardin, E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential, Numer. Math. 108, 223-262 (2007).
-
(2007)
Numer. Math.
, vol.108
, pp. 223-262
-
-
Dujardin, G.1
Faou, E.2
-
7
-
-
84888277802
-
-
L. H. Eliasson, S. B. Kuksin, KAM for the non-linear Schrödinger equation, Ann. Math., to appear.
-
-
-
-
8
-
-
72749102237
-
Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part I: Finite dimensional discretization
-
E. Faou, B. Grébert, E. Paturel, Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part I: Finite dimensional discretization, Numer. Math. 114, 429-458 (2010).
-
(2010)
Numer. Math.
, vol.114
, pp. 429-458
-
-
Faou, E.1
Grébert, B.2
Paturel, E.3
-
9
-
-
72749091261
-
Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part II: Abstract splitting
-
E. Faou, B. Grébert, E. Paturel, Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part II: Abstract splitting, Numer. Math. 114, 459-490 (2010).
-
(2010)
Numer. Math.
, vol.114
, pp. 459-490
-
-
Faou, E.1
Grébert, B.2
Paturel, E.3
-
10
-
-
77954088723
-
-
L. Gauckler, C. Lubich, Nonlinear Schrödinger equations and their spectral semi-discretizations over long times, Found. Comput. Math. (2010, last issue). doi: 10. 1007/s10208-010-9059-z.
-
-
-
-
11
-
-
0003835647
-
-
2nd edn., Springer Series in Computational Mathematics, Berlin: Springer
-
E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31, 2nd edn. (Springer, Berlin, 2006).
-
(2006)
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations
, vol.31
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
12
-
-
0022738251
-
Split-step methods for the solution of the nonlinear Schrödinger equation
-
J. A. C. Weideman, B. M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 23, 485-507 (1986).
-
(1986)
SIAM J. Numer. Anal.
, vol.23
, pp. 485-507
-
-
Weideman, J.A.C.1
Herbst, B.M.2
|