|
Volumn 293, Issue 2, 2010, Pages 130-136
|
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches
|
Author keywords
Artificial neural networks; Fullerene; Hildebrand parameter; QSPR
|
Indexed keywords
ARTIFICIAL NEURAL NETWORK;
ARTIFICIAL NEURAL NETWORKS;
BUCKMINSTERFULLERENES;
CARBON ALLOTROPES;
DEGREE OF INTERACTION;
DRAGON DESCRIPTORS;
HILDEBRAND;
HILDEBRAND SOLUBILITY;
MULTIPLE LINEAR REGRESSIONS;
NON-LINEAR REGRESSION;
NONLINEAR APPROACH;
PREDICTION PERFORMANCE;
SOLUBILITY STUDIES;
STATISTICAL PARAMETERS;
THERMODYNAMIC PARAMETER;
FULLERENES;
LINEAR REGRESSION;
ORGANIC SOLVENTS;
SOLUBILITY;
NEURAL NETWORKS;
|
EID: 77953322454
PISSN: 03783812
EISSN: None
Source Type: Journal
DOI: 10.1016/j.fluid.2010.02.025 Document Type: Article |
Times cited : (9)
|
References (20)
|