메뉴 건너뛰기




Volumn 293, Issue 2, 2010, Pages 130-136

Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches

Author keywords

Artificial neural networks; Fullerene; Hildebrand parameter; QSPR

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; BUCKMINSTERFULLERENES; CARBON ALLOTROPES; DEGREE OF INTERACTION; DRAGON DESCRIPTORS; HILDEBRAND; HILDEBRAND SOLUBILITY; MULTIPLE LINEAR REGRESSIONS; NON-LINEAR REGRESSION; NONLINEAR APPROACH; PREDICTION PERFORMANCE; SOLUBILITY STUDIES; STATISTICAL PARAMETERS; THERMODYNAMIC PARAMETER;

EID: 77953322454     PISSN: 03783812     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fluid.2010.02.025     Document Type: Article
Times cited : (9)

References (20)
  • 7
    • 61349095626 scopus 로고    scopus 로고
    • MathWorks Inc., Natick, MA
    • Matlab Version 7.5 (2007), MathWorks Inc., Natick, MA
    • (2007) Matlab Version 7.5
  • 13
    • 77949475660 scopus 로고    scopus 로고
    • Hypercube, Inc., Gainesville
    • HyperChem version 7.0 (2007), Hypercube, Inc., Gainesville
    • (2007) HyperChem version 7.0


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.