메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Bernoulli sampling based (ε, δ)-approximate aggregation in large-scale sensor networks

Author keywords

[No Author keywords available]

Indexed keywords

AGGREGATION ALGORITHMS; ARBITRARY PRECISION; BERNOULLI; DYNAMIC PROPERTY; ENERGY CONSUMPTION; ERROR BOUND; LARGE SCALE SENSOR NETWORK; SAMPLING-BASED; STATIC NETWORKS; UNIFORM SAMPLING;

EID: 77953307153     PISSN: 0743166X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/INFCOM.2010.5461929     Document Type: Conference Paper
Times cited : (43)

References (27)
  • 1
    • 1142291591 scopus 로고    scopus 로고
    • The Design of An Acquisitional Query Processor for Sensor Networks
    • S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of An Acquisitional Query Processor for Sensor Networks. In SIGMOD, pp 491-502, 2003.
    • (2003) SIGMOD , pp. 491-502
    • Madden, S.1    Franklin, M.J.2    Hellerstein, J.M.3    Hong, W.4
  • 2
    • 18844411823 scopus 로고    scopus 로고
    • Understanding Packet Delivery Performance in Dense Wireless Sensor Networks
    • J. Zhao and R. Govindan. Understanding Packet Delivery Performance in Dense Wireless Sensor Networks. In SenSys, pp 1-13, 2003.
    • (2003) SenSys , pp. 1-13
    • Zhao, J.1    Govindan, R.2
  • 3
    • 84978428047 scopus 로고    scopus 로고
    • Tag: A Tiny Aggregation Service for Ad-hoc SensorNetworks
    • J. H. S. Madden, M.J. Franklin and W. Hong, Tag: A Tiny Aggregation Service for Ad-hoc SensorNetworks. in OSDI, 2002, pp. 131-146.
    • (2002) OSDI , pp. 131-146
    • Madden, J.H.S.1    Franklin, M.J.2    Hong, W.3
  • 4
    • 2442576849 scopus 로고    scopus 로고
    • Approximate Aggregation Techniques for Sensor Databases
    • J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation Techniques for Sensor Databases. In ICDE, pp 449-460, 2004.
    • (2004) ICDE , pp. 449-460
    • Considine, J.1    Li, F.2    Kollios, G.3    Byers, J.4
  • 5
    • 27644449262 scopus 로고    scopus 로고
    • Synopsis Diffusion for Robust Aggregation in Sensor Networks
    • S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis Diffusion for Robust Aggregation in Sensor Networks. In SenSys, pp 250-262, 2004.
    • (2004) SenSys , pp. 250-262
    • Nath, S.1    Gibbons, P.B.2    Seshan, S.3    Anderson, Z.R.4
  • 6
    • 35048827466 scopus 로고    scopus 로고
    • Hierarchical In-network Data Aggregation with Quality Guarantees
    • A. Deligiannakis, Y. Kotidis and N. Roussopoulos. Hierarchical In-network Data Aggregation with Quality Guarantees. In EDBT, pp 658-675, 2004.
    • (2004) EDBT , pp. 658-675
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 7
    • 29844457932 scopus 로고    scopus 로고
    • Holistic Aggregates in a Networked World: Distributed Tracking of Approximate Quantiles
    • G. Cormode, M. N. Garofalakis, S. Muthukrishnan and R. Rastogi. Holistic Aggregates in a Networked World: Distributed Tracking of Approximate Quantiles. In SIGMOD, pp 25-36, 2005.
    • (2005) SIGMOD , pp. 25-36
    • Cormode, G.1    Garofalakis, M.N.2    Muthukrishnan, S.3    Rastogi, R.4
  • 8
    • 33748704250 scopus 로고    scopus 로고
    • Processing approximate aggregate queries in wireless sensor networks
    • DOI 10.1016/j.is.2005.02.001, PII S0306437905000177
    • A. Deligiannakis, Y. Kotidis and N. Rossopoulos. Processing Approximate Aggregation Queries in Wireless Senor Networks. In Information Systems, 31(8):770-792, 2006. (Pubitemid 44397264)
    • (2006) Information Systems , vol.31 , Issue.8 , pp. 770-792
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 9
    • 27944507957 scopus 로고    scopus 로고
    • Infer: A Bayesian Inference Approach towards Energy Efficient Data Collection in Dense Sensor Networks
    • G. Hartl and B. Li. Infer: A Bayesian Inference Approach towards Energy Efficient Data Collection in Dense Sensor Networks. In ICDCS, pp 371-380, 2005.
    • (2005) ICDCS , pp. 371-380
    • Hartl, G.1    Li, B.2
  • 10
    • 33749644725 scopus 로고    scopus 로고
    • Approximate Data Collection in Sensor Networks using Probabilistic Models
    • D. Chu, A. Deshpande, J.M. Hellerstein andW. Hong. Approximate Data Collection in Sensor Networks using Probabilistic Models. In ICDE, pp 48-59, 2006.
    • (2006) ICDE , pp. 48-59
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.M.3    Hong, W.4
  • 11
    • 85011015549 scopus 로고    scopus 로고
    • Suppression and Failures in Sensor Networks: A Bayesian Approach
    • A. Silberstein,G. Puggioni,A. Gelfand, K. Munagala and J. Yang. Suppression and Failures in Sensor Networks: A Bayesian Approach. In VLDB, pp 842-853, 2007.
    • (2007) VLDB , pp. 842-853
    • Silberstein, A.1    Puggioni, G.2    Gelfand, A.3    Munagala, K.4    Yang, J.5
  • 12
    • 70350212979 scopus 로고    scopus 로고
    • Sample Based (ε, δ)-Approximate Aggregation in Sensor Networks
    • S. Y. Cheng and J. Z. Li. Sample Based (ε, δ)-Approximate Aggregation in Sensor Networks. In ICDCS, pp 273-280, 2009.
    • (2009) ICDCS , pp. 273-280
    • Cheng, S.Y.1    Li, J.Z.2
  • 16
    • 42749099671 scopus 로고    scopus 로고
    • Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks
    • G. Huang, X. Li and J. He. Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks. In Industrial Electronics and Applications, pp 1-5, 2006.
    • (2006) Industrial Electronics and Applications , pp. 1-5
    • Huang, G.1    Li, X.2    He, J.3
  • 18
    • 35448981538 scopus 로고    scopus 로고
    • Cardinality Estimation Using Sample Views with Quality Assurance
    • P. Larson, W. Lehner, J.Zhou and P. Zabback. Cardinality Estimation Using Sample Views with Quality Assurance. In SIGMOD, pp 175-186, 2007.
    • (2007) SIGMOD , pp. 175-186
    • Larson, P.1    Lehner, W.2    Zhou, J.3    Zabback, P.4
  • 19
    • 35448945249 scopus 로고    scopus 로고
    • Maintaining Bernoulli Sample over Evolving Multisets
    • R. Cemulla, W. Lehner and P. J. Haas. Maintaining Bernoulli Sample over Evolving Multisets. In POSE, pp 93-102, 2007.
    • (2007) POSE , pp. 93-102
    • Cemulla, R.1    Lehner, W.2    Haas, P.J.3
  • 20
    • 70350212317 scopus 로고    scopus 로고
    • Approximating Aggregation Queries in Peer-to-Peer Networks
    • A. Benjamin, D. Gautam, G. Dimitrios and K. Vana. Approximating Aggregation Queries in Peer-to-Peer Networks. In ICDE, pp 642-654, 2006.
    • (2006) ICDE , pp. 642-654
    • Benjamin, A.1    Gautam, D.2    Dimitrios, G.3    Vana, K.4
  • 21
    • 49749112019 scopus 로고    scopus 로고
    • Efficient Data Sampling in Heterogeneous Peer-to-Peer Networks
    • A
    • A. Benjamin A, L. Song, D. Gunopulos. Efficient Data Sampling in Heterogeneous Peer-to-Peer Networks. In ICDM, pp 28-31, 2007.
    • (2007) ICDM , pp. 28-31
    • Benjamin, A.1    Song, L.2    Gunopulos, D.3
  • 22
    • 35448936512 scopus 로고    scopus 로고
    • On Synopses for Distinct-Value Estimation under Multiset Operations
    • K. Bayer, P. J. Haas and B. Reinwald. On Synopses for Distinct-Value Estimation Under Multiset Operations. In SIGMOD, pp 199-210, 2007.
    • (2007) SIGMOD , pp. 199-210
    • Bayer, K.1    Haas, P.J.2    Reinwald, B.3
  • 25
    • 84978428047 scopus 로고    scopus 로고
    • TAG: A Tiny Aggregation Service for Ad Hoc Sensor Networks
    • S.Madden, M.J. Franklin, J.M. Hellerstein, W. Hong. TAG: A Tiny Aggregation Service for Ad Hoc Sensor Networks. In OSDI, pp 131-146, 2002.
    • (2002) OSDI , pp. 131-146
    • Madden, S.1    Franklin, M.J.2    Hellerstein, J.M.3    Hong, W.4
  • 26
    • 77953300693 scopus 로고    scopus 로고
    • http://www.pmel.noaa.gov/tao/.
  • 27
    • 77953317983 scopus 로고    scopus 로고
    • http://berkeley.intelresearch.net/labdata/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.