-
1
-
-
4544304381
-
On the generalization ability of on-line learning algorithms
-
N. Cesa-bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. IEEE TIT, 50:2050-2057, 2004.
-
(2004)
IEEE TIT
, vol.50
, pp. 2050-2057
-
-
Cesa-bianchi, N.1
Conconi, A.2
Gentile, C.3
-
2
-
-
85157960581
-
Implicit online learning with kernels
-
MIT Press
-
L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli. Implicit online learning with kernels. In Neural Information Processing Systems. MIT Press, 2006.
-
(2006)
Neural Information Processing Systems
-
-
Cheng, L.1
Vishwanathan, S.V.N.2
Schuurmans, D.3
Wang, S.4
Caelli, T.5
-
3
-
-
50849105799
-
Background subtraction for temporally irregular dynamic textures
-
G. Dalle, J. Migdal, and W. Grimson. Background subtraction for temporally irregular dynamic textures. In WACV, 2008.
-
(2008)
WACV
-
-
Dalle, G.1
Migdal, J.2
Grimson, W.3
-
4
-
-
0001267733
-
Non-parametric model for background subtraction
-
A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background subtraction. In ECCV, 2000.
-
(2000)
ECCV
-
-
Elgammal, A.1
Harwood, D.2
Davis, L.3
-
5
-
-
33947253926
-
Real-time stereo matching using orthogonal reliability-based dynamic programming
-
DOI 10.1109/TIP.2006.891344
-
M. Gong and Y.-H. Yang. Real-time stereo matching using orthogonal reliability-based dynamic programming. IEEE TIP, 16(3):879-884, 2007. (Pubitemid 46431980)
-
(2007)
IEEE Transactions on Image Processing
, vol.16
, Issue.3
, pp. 879-884
-
-
Gong, M.1
Yang, Y.-H.2
-
6
-
-
33947599947
-
Gpu-based foreground-background segmentation using an extended colinearity criterion
-
A. Griesser, S. D. Roeck, A. Neubeck, and L. V. Gool. Gpu-based foreground-background segmentation using an extended colinearity criterion. In Vision, Modeling, and Visualization, 2005.
-
(2005)
Vision, Modeling, and Visualization
-
-
Griesser, A.1
Roeck, S.D.2
Neubeck, A.3
Gool, L.V.4
-
7
-
-
51949108825
-
Real time object tracking based on dynamic feature grouping with background subtraction
-
Z. Kim. Real time object tracking based on dynamic feature grouping with background subtraction. In CVPR, 2008.
-
(2008)
CVPR
-
-
Kim, Z.1
-
9
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
January
-
J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, January 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M.K.2
-
10
-
-
34249656812
-
Minimizing nonsubmodular functions with graph cuts - A review
-
V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts-a review. IEEE T. PAMI, 29:1274-1279, 2007.
-
(2007)
IEEE T. PAMI
, vol.29
, pp. 1274-1279
-
-
Kolmogorov, V.1
Rother, C.2
-
12
-
-
34248560655
-
Discriminative learning can succeed where generative learning fails
-
P. Long, R. Servedio, and H. Simon. Discriminative learning can succeed where generative learning fails. Inf. Process. Lett., 103(4):131-135, 2007.
-
(2007)
Inf. Process. Lett.
, vol.103
, Issue.4
, pp. 131-135
-
-
Long, P.1
Servedio, R.2
Simon, H.3
-
13
-
-
51949094565
-
Background subtraction in highly dynamic scenes
-
V. Mahadevan and N. Vasconcelos. Background subtraction in highly dynamic scenes. In CVPR, 2008.
-
(2008)
CVPR
-
-
Mahadevan, V.1
Vasconcelos, N.2
-
14
-
-
35348830375
-
Background subtraction using markov thresholds
-
J. Migdal and W. Grimson. Background subtraction using markov thresholds. In WMVC, pages 58-65, 2005.
-
(2005)
WMVC
, pp. 58-65
-
-
Migdal, J.1
Grimson, W.2
-
16
-
-
56749153838
-
Making background subtraction robust to sudden illumination changes
-
J. Pilet, C. Strecha, and P. Fua. Making background subtraction robust to sudden illumination changes. In ECCV, pages 567-580, 2008.
-
(2008)
ECCV
, pp. 567-580
-
-
Pilet, J.1
Strecha, C.2
Fua, P.3
-
17
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13:1443-1471, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 1443-1471
-
-
Scholkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.4
Williamson, R.5
-
19
-
-
28044439637
-
Bayesian modeling of dynamic scenes for object detection
-
Y. Sheikh and M. Shah. Bayesian modeling of dynamic scenes for object detection. IEEE T. PAMI, 27(11):1778-1792, 2005.
-
(2005)
IEEE T. PAMI
, vol.27
, Issue.11
, pp. 1778-1792
-
-
Sheikh, Y.1
Shah, M.2
-
20
-
-
24644476577
-
Bayesian object detection in dynamic scenes
-
Y. Sheikh and M. Shah. Bayesian object detection in dynamic scenes. In CVPR, 2005.
-
(2005)
CVPR
-
-
Sheikh, Y.1
Shah, M.2
-
22
-
-
0034244889
-
Learning patterns of activity using real-time tracking
-
C. Stauffer and W. Grimson. Learning patterns of activity using real-time tracking. IEEE T. PAMI, 22:747-757, 2000.
-
(2000)
IEEE T. PAMI
, vol.22
, pp. 747-757
-
-
Stauffer, C.1
Grimson, W.2
-
23
-
-
84898948585
-
Max-margin Markov networks
-
Cambridge, MA, MIT Press
-
B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Neural Information Processing Systems, pages 25-32, Cambridge, MA, 2004. MIT Press.
-
(2004)
Neural Information Processing Systems
, pp. 25-32
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
24
-
-
0033285765
-
Wallflower: Principles and practice of background maintenance
-
K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance. In ICCV, 1999.
-
(1999)
ICCV
-
-
Toyama, K.1
Krumm, J.2
Brumitt, B.3
Meyers, B.4
-
25
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:1453-1484, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
27
-
-
0344551957
-
Segmenting foreground objects from a dynamic textured background via a robust Kalman filter
-
J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In ICCV, 2003.
-
(2003)
ICCV
-
-
Zhong, J.1
Sclaroff, S.2
-
28
-
-
3042585857
-
Recursive unsupervised learning of finite mixture models
-
Z. Zivkovic and F. Heijden. Recursive unsupervised learning of finite mixture models. IEEE T. PAMI, 26(5), 2004.
-
(2004)
IEEE T. PAMI
, vol.26
, Issue.5
-
-
Zivkovic, Z.1
Heijden, F.2
|