메뉴 건너뛰기




Volumn , Issue , 2009, Pages 763-770

Level set segmentation with both shape and intensity priors

Author keywords

[No Author keywords available]

Indexed keywords

APPROPRIATE DISTANCES; BACKGROUND OBJECTS; BAYES' RULE; CT SCAN; IMAGE ENERGY; IMAGE INFORMATION; IMAGE MODELS; INTENSITY DISTRIBUTION; INTENSITY INFORMATION; LEVEL SET SEGMENTATION; LEVEL SETS; NON-PARAMETRIC; NONPARAMETRIC DENSITY ESTIMATION; PRIOR INFORMATION; SEGMENTATION ALGORITHMS; SHAPE DISTRIBUTION; SHAPE ENERGY; TRAINING SETS; VARIATIONAL LEVEL SET; WEIGHTING FACTORS;

EID: 77953212033     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459290     Document Type: Conference Paper
Times cited : (64)

References (33)
  • 1
    • 0742311252 scopus 로고    scopus 로고
    • Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients?
    • G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson. Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? SIAM Journal On Applied Mathematics, 63(6):2128-2154, 2003.
    • (2003) SIAM Journal on Applied Mathematics , vol.63 , Issue.6 , pp. 2128-2154
    • Aubert, G.1    Barlaud, M.2    Faugeras, O.3    Jehan-Besson, S.4
  • 3
    • 85040587042 scopus 로고    scopus 로고
    • On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional
    • T. Brox and D. Cremers. On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional. In Proc. SSVM, 2007.
    • Proc. SSVM, 2007
    • Brox, T.1    Cremers, D.2
  • 5
    • 77953205720 scopus 로고    scopus 로고
    • Histogram Based Segmentation Using Wasserstein Distances
    • T. Chan, S. Esedoglu, and K. Ni. Histogram Based Segmentation Using Wasserstein Distances. In Proc. SSVM, 2007.
    • Proc. SSVM, 2007
    • Chan, T.1    Esedoglu, S.2    Ni, K.3
  • 7
    • 24944514582 scopus 로고    scopus 로고
    • Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics
    • G. Charpiat, O. Faugeras, and R. Keriven. Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics. Foundations of Computational Mathematics, 5(1):1-58, 2005.
    • (2005) Foundations of Computational Mathematics , vol.5 , Issue.1 , pp. 1-58
    • Charpiat, G.1    Faugeras, O.2    Keriven, R.3
  • 8
    • 33744920320 scopus 로고    scopus 로고
    • Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation
    • D. Cremers, S. Osher, and S. Soatto. Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation. International Journal of Computer Vision, 69(3):335-351, 2006.
    • (2006) International Journal of Computer Vision , vol.69 , Issue.3 , pp. 335-351
    • Cremers, D.1    Osher, S.2    Soatto, S.3
  • 9
    • 33846221503 scopus 로고    scopus 로고
    • A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape
    • D. Cremers, M. Rousson, and R. Deriche. A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision, 72(2):195-215, 2007.
    • (2007) International Journal of Computer Vision , vol.72 , Issue.2 , pp. 195-215
    • Cremers, D.1    Rousson, M.2    Deriche, R.3
  • 10
    • 77953216619 scopus 로고    scopus 로고
    • A Pseudo-Distance for Shape Priors in Level Set Segmentation
    • D. Cremers and S. Soatto. A Pseudo-Distance for Shape Priors in Level Set Segmentation. In Proc. VLSM, 2003.
    • Proc. VLSM, 2003
    • Cremers, D.1    Soatto, S.2
  • 12
  • 16
    • 34547916854 scopus 로고    scopus 로고
    • Nonparametric shape priors for active contour-based image segmentation
    • DOI 10.1016/j.sigpro.2007.05.026, PII S0165168407001922
    • J. Kim, M. Çetin, and A. Willsky. Nonparametric Shape Priors for Active Contour-Based Image Segmentation. Signal Processing, 87(12):3021-3044, 2007. (Pubitemid 47259188)
    • (2007) Signal Processing , vol.87 , Issue.12 , pp. 3021-3044
    • Kim, J.1    Cetin, M.2    Willsky, A.S.3
  • 17
    • 27744599498 scopus 로고    scopus 로고
    • A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution
    • J. Kim, J. Fisher III, A. Yezzi, M. Cetin, and A. Willsky. A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution. IEEE Trans. on Image Processing, 14(10):1486-1502, 2005.
    • (2005) IEEE Trans. on Image Processing , vol.14 , Issue.10 , pp. 1486-1502
    • Kim, J.1    Fisher III, J.2    Yezzi, A.3    Cetin, M.4    Willsky, A.5
  • 20
    • 52649131914 scopus 로고    scopus 로고
    • Minimization of Region-Scalable Fitting Energy for Image Segmentation
    • C. Li, C. Kao, J. Gore, and Z. Ding. Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans. on Image Processing, 17(10):1940-1949, 2008.
    • (2008) IEEE Trans. on Image Processing , vol.17 , Issue.10 , pp. 1940-1949
    • Li, C.1    Kao, C.2    Gore, J.3    Ding, Z.4
  • 21
    • 36348964934 scopus 로고    scopus 로고
    • Image segmentation using active contours driven by the Bhattacharyya gradient flow
    • DOI 10.1109/TIP.2007.908073
    • O. Michailovich, Y. Rathi, and A. Tannenbaum. Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow. IEEE Transactions on Image Processing, 16(11):2787-2801, 2007. (Pubitemid 350141851)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.11 , pp. 2787-2801
    • Michailovich, O.1    Rathi, Y.2    Tannenbaum, A.3
  • 22
    • 84990602490 scopus 로고
    • Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems
    • D. Mumford and J. Shah. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Communications on Pure and Applied Mathematics, 42(5):577-685, 1989.
    • (1989) Communications on Pure and Applied Mathematics , vol.42 , Issue.5 , pp. 577-685
    • Mumford, D.1    Shah, J.2
  • 28
    • 0035425439 scopus 로고    scopus 로고
    • Curve Evolution Implementation of the Mumford-Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnification
    • A. Tsai, A. Yezzi, and A. Willsky. Curve Evolution Implementation of the Mumford-Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnification. IEEE Trans. on Image Processing, 10(8):1169-1186, 2001.
    • (2001) IEEE Trans. on Image Processing , vol.10 , Issue.8 , pp. 1169-1186
    • Tsai, A.1    Yezzi, A.2    Willsky, A.3
  • 30
    • 0036891794 scopus 로고    scopus 로고
    • A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model
    • L. Vese and T. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. Int. J. Comput Vis., 50(3):271-293, 2002.
    • (2002) Int. J. Comput Vis. , vol.50 , Issue.3 , pp. 271-293
    • Vese, L.1    Chan, T.2
  • 32
    • 0030210970 scopus 로고    scopus 로고
    • A variational level set approach to multiphase motion
    • DOI 10.1006/jcph.1996.0167
    • H. Zhao, T. Chan, B. Merriman, and S. Osher. A Variational Level Set Approach to Multiphase Motion. Journal of Computational Physics, 127(1):179-195, 1996. (Pubitemid 126162336)
    • (1996) Journal of Computational Physics , vol.127 , Issue.1 , pp. 179-195
    • Zhao, H.-K.1    Chan, T.2    Merriman, B.3    Osher, S.4
  • 33
    • 0030247213 scopus 로고    scopus 로고
    • Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
    • S. Zhu and A. Yuille. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):884-900, 1996.
    • (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 884-900
    • Zhu, S.1    Yuille, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.