-
2
-
-
33744804835
-
-
10.1103/PhysRevLett.96.216802
-
P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 (2006). 10.1103/PhysRevLett.96.216802
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 216802
-
-
Mehta, P.1
Andrei, N.2
-
4
-
-
62749140078
-
-
10.1140/epjst/e2009-00962-3
-
H. Schoeller, Eur. Phys. J. Spec. Top. 168, 179 (2009). 10.1140/epjst/e2009-00962-3
-
(2009)
Eur. Phys. J. Spec. Top.
, vol.168
, pp. 179
-
-
Schoeller, H.1
-
6
-
-
33745381980
-
-
10.1103/PhysRevB.73.245326
-
B. Doyon and N. Andrei, Phys. Rev. B 73, 245326 (2006). 10.1103/PhysRevB.73.245326
-
(2006)
Phys. Rev. B
, vol.73
, pp. 245326
-
-
Doyon, B.1
Andrei, N.2
-
7
-
-
36849023070
-
-
10.1103/PhysRevLett.99.236808
-
J. E. Han and R. J. Heary Phys. Rev. Lett. 99, 236808 (2007). 10.1103/PhysRevLett.99.236808
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 236808
-
-
Han, J.E.1
Heary, R.J.2
-
8
-
-
58149175663
-
-
10.1103/PhysRevB.78.235110
-
T. L. Schmidt, P. Werner, L. Mühlbacher, and A. Komnik, Phys. Rev. B 78, 235110 (2008). 10.1103/PhysRevB.78.235110
-
(2008)
Phys. Rev. B
, vol.78
, pp. 235110
-
-
Schmidt, T.L.1
Werner, P.2
Mühlbacher, L.3
Komnik, A.4
-
9
-
-
43949101018
-
-
10.1103/PhysRevB.77.195316
-
S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77, 195316 (2008). 10.1103/PhysRevB.77.195316
-
(2008)
Phys. Rev. B
, vol.77
, pp. 195316
-
-
Weiss, S.1
Eckel, J.2
Thorwart, M.3
Egger, R.4
-
10
-
-
27144509096
-
-
10.1103/PhysRevLett.95.056602
-
S. Kehrein, Phys. Rev. Lett. 95, 056602 (2005). 10.1103/PhysRevLett.95. 056602
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 056602
-
-
Kehrein, S.1
-
11
-
-
28844489602
-
-
10.1103/PhysRevLett.95.196801
-
F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005). 10.1103/PhysRevLett.95.196801
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 196801
-
-
Anders, F.B.1
Schiller, A.2
-
13
-
-
19444381068
-
-
10.1103/PhysRevLett.93.076401
-
S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004). 10.1103/PhysRevLett.93.076401
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 076401
-
-
White, S.R.1
Feiguin, A.E.2
-
14
-
-
10244221686
-
-
10.1088/1742-5468/2004/04/P04005
-
A. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theory Exp. (2004) P04005. 10.1088/1742-5468/2004/04/P04005
-
J. Stat. Mech.: Theory Exp.
, vol.2004
, pp. 04005
-
-
Daley, A.1
Kollath, C.2
Schollwöck, U.3
Vidal, G.4
-
15
-
-
19744381827
-
-
10.1103/PhysRevB.70.121302
-
P. Schmitteckert, Phys. Rev. B 70, 121302 (R) (2004). 10.1103/PhysRevB.70.121302
-
(2004)
Phys. Rev. B
, vol.70
, pp. 121302
-
-
Schmitteckert, P.1
-
19
-
-
34247857394
-
-
10.1103/PhysRevLett.98.186802;
-
C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft, and V. Meden, Phys. Rev. Lett. 98, 186802 (2007) 10.1103/PhysRevLett.98.186802
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 186802
-
-
Karrasch, C.1
Hecht, T.2
Weichselbaum, A.3
Oreg, Y.4
Von Delft, J.5
Meden, V.6
-
20
-
-
34248563491
-
-
10.1088/1367-2630/9/5/123
-
C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft, and V. Meden, New J. Phys. 9, 123 (2007). 10.1088/1367-2630/9/5/123
-
(2007)
New J. Phys.
, vol.9
, pp. 123
-
-
Karrasch, C.1
Hecht, T.2
Weichselbaum, A.3
Oreg, Y.4
Von Delft, J.5
Meden, V.6
-
21
-
-
56349125323
-
-
10.1088/0953-8984/20/34/345205
-
C. Karrasch, R. Hedden, R. Peters, Th. Pruschke, K. Schönhammer, and V. Meden, J. Phys.: Condens. Matter 20, 345205 (2008). 10.1088/0953-8984/20/34/ 345205
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 345205
-
-
Karrasch, C.1
Hedden, R.2
Peters, R.3
Pruschke, Th.4
Schönhammer, K.5
Meden, V.6
-
23
-
-
77955154262
-
-
Diploma thesis, RWTH Aachen
-
S. Jakobs, Diploma thesis, RWTH Aachen, 2003.
-
(2003)
-
-
Jakobs, S.1
-
26
-
-
34347385635
-
-
10.1103/PhysRevB.75.241103
-
D. Bohr and P. Schmitteckert, Phys. Rev. B 75, 241103 (R) (2007). 10.1103/PhysRevB.75.241103
-
(2007)
Phys. Rev. B
, vol.75
, pp. 241103
-
-
Bohr, D.1
Schmitteckert, P.2
-
30
-
-
4243454528
-
-
10.1103/PhysRevB.22.613
-
P. Schlottmann, Phys. Rev. B 22, 613 (1980). 10.1103/PhysRevB.22.613
-
(1980)
Phys. Rev. B
, vol.22
, pp. 613
-
-
Schlottmann, P.1
-
31
-
-
25944438148
-
-
10.1103/PhysRevB.25.4815
-
P. Schlottmann, Phys. Rev. B 25, 4815 (1982). 10.1103/PhysRevB.25.4815
-
(1982)
Phys. Rev. B
, vol.25
, pp. 4815
-
-
Schlottmann, P.1
-
33
-
-
77955156886
-
-
arXiv:0910.5242 (unpublished).
-
L. Borda and A. Zawadowski, arXiv:0910.5242 (unpublished).
-
-
-
Borda, L.1
Zawadowski, A.2
-
34
-
-
34548086484
-
-
10.1103/PhysRevLett.99.076806
-
B. Doyon, Phys. Rev. Lett. 99, 076806 (2007). 10.1103/PhysRevLett.99. 076806
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 076806
-
-
Doyon, B.1
-
39
-
-
0001303808
-
-
10.1142/S0217751X94000972
-
T. R. Morris, Int. J. Mod. Phys. A 9, 2411 (1994). 10.1142/ S0217751X94000972
-
(1994)
Int. J. Mod. Phys. A
, vol.9
, pp. 2411
-
-
Morris, T.R.1
-
40
-
-
77955136902
-
-
In the context of quantum impurity systems, the FRG gives reasonable physical results despite its nonconserving nature, while the opposite often holds for Hartree-Fock calculations.
-
In the context of quantum impurity systems, the FRG gives reasonable physical results despite its nonconserving nature, while the opposite often holds for Hartree-Fock calculations.
-
-
-
-
42
-
-
77955157819
-
-
The shortcoming of the "reservoir-cutoff" scheme introduced in Ref. is that when implemented within the Matsubara formalism, second-order results are quantitatively inferior to those of the Θ -function approach. Namely, if one discards the flow of the three-particle vertex γ3Λ but fully accounts for the frequency-dependence of γ2Λ, the former (the latter) gives reasonable results for the single impurity Anderson model in comparison with NRG data up U/Γ=2 (U/Γ=6 ), respectively (see Ref.). In order to tackle larger values of U within the reservoir-cut-off approach, the second-order flow equations have to be further approximated (by neglecting, e.g., certain frequency-dependencies or self-energy feedbacks). For the problem at hand, we briefly present equilibrium second-order FRG results obtained from the sharp cut-off scheme only (see the Appendix).
-
The shortcoming of the "reservoir-cutoff" scheme introduced in Ref. is that when implemented within the Matsubara formalism, second-order results are quantitatively inferior to those of the Θ -function approach. Namely, if one discards the flow of the three-particle vertex γ 3 Λ but fully accounts for the frequency-dependence of γ 2 Λ, the former (the latter) gives reasonable results for the single impurity Anderson model in comparison with NRG data up U / Γ = 2 (U / Γ = 6), respectively (see Ref.). In order to tackle larger values of U within the reservoir-cut-off approach, the second-order flow equations have to be further approximated (by neglecting, e.g., certain frequency-dependencies or self-energy feedbacks). For the problem at hand, we briefly present equilibrium second-order FRG results obtained from the sharp cut-off scheme only (see the Appendix).
-
-
-
-
43
-
-
77955140822
-
-
Similarly, one can show that in case of structureless leads implementing the reservoir cut-off scheme of Sec. directly within the Matsubara formalism gives the same analytic approximate (i.e., truncated to first order) self-energy flow equation as obtained using the sharp cut-off procedure.
-
Similarly, one can show that in case of structureless leads implementing the reservoir cut-off scheme of Sec. directly within the Matsubara formalism gives the same analytic approximate (i.e., truncated to first order) self-energy flow equation as obtained using the sharp cut-off procedure.
-
-
-
-
44
-
-
77955129885
-
-
′ is finite (Ref.).
-
′ is finite (Ref.).
-
-
-
-
45
-
-
77955134188
-
-
In this case, we use the reservoir cut-off scheme only which allows for a simple interpretation of the self-energy as effective system parameters. Physical quantities (and the question whether they are governed by power laws in the scaling limit) will be investigated numerically using both nonequilibrium FRG frameworks (see Sec. ).
-
In this case, we use the reservoir cut-off scheme only which allows for a simple interpretation of the self-energy as effective system parameters. Physical quantities (and the question whether they are governed by power laws in the scaling limit) will be investigated numerically using both nonequilibrium FRG frameworks (see Sec.).
-
-
-
-
46
-
-
77955160890
-
-
In case of the single-channel IRLM, TK can be related to the Kondo temperature of the anisotropic Kondo model (Refs.).
-
In case of the single-channel IRLM, T K can be related to the Kondo temperature of the anisotropic Kondo model (Refs.).
-
-
-
-
47
-
-
77955161597
-
-
Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
-
Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
-
-
-
-
48
-
-
77955164308
-
-
For the single-channel IRLM, the same equilibrium exponent (which to leading order in U agrees with αχ) was computed from the functional and numerical renormalization group frameworks as well as by mapping the system to the anisotropic Kondo model by virtue of bosonization (Ref.). As for the two-channel case, the simple FRG approximation scheme employed in this paper agrees with the other approaches up to fairly large Coulomb interactions.
-
For the single-channel IRLM, the same equilibrium exponent (which to leading order in U agrees with α χ) was computed from the functional and numerical renormalization group frameworks as well as by mapping the system to the anisotropic Kondo model by virtue of bosonization (Ref.). As for the two-channel case, the simple FRG approximation scheme employed in this paper agrees with the other approaches up to fairly large Coulomb interactions.
-
-
-
-
49
-
-
77955170634
-
-
The equilibrium low energy scale TK can actually be defined as the voltage regime where the current crosses from a linear increase to a power-law decay (by considering, e.g., the maximum value of J). Except for prefactors, this definition is as expected equivalent to the one of Eq. , at least within the FRG approximation.
-
The equilibrium low energy scale T K can actually be defined as the voltage regime where the current crosses from a linear increase to a power-law decay (by considering, e.g., the maximum value of J). Except for prefactors, this definition is as expected equivalent to the one of Eq., at least within the FRG approximation.
-
-
-
-
50
-
-
77955134686
-
-
res evolves beyond the linear regime.
-
res evolves beyond the linear regime.
-
-
-
-
51
-
-
77955141039
-
-
arXiv:0911.5496 (unpublished).
-
C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht, L. Borda, V. Meden, and H. Schoeller, arXiv:0911.5496 (unpublished).
-
-
-
Karrasch, C.1
Andergassen, S.2
Pletyukhov, M.3
Schuricht, D.4
Borda, L.5
Meden, V.6
Schoeller, H.7
-
52
-
-
77955131358
-
-
As for the Anderson model, we replace the single-scale propagator on the right-hand side of this flow equation by the cut-off derivative of the Green's function (Ref.). This is motivated by the fulfillment of Ward identities and changes our results only to the order of the truncation. However, both for the Anderson impurity and the interacting resonant level model discussed in this paper, this modified FRG scheme leads to quantitatively better results for intermediate Coulomb interactions (beyond second order).
-
As for the Anderson model, we replace the single-scale propagator on the right-hand side of this flow equation by the cut-off derivative of the Green's function (Ref.). This is motivated by the fulfillment of Ward identities and changes our results only to the order of the truncation. However, both for the Anderson impurity and the interacting resonant level model discussed in this paper, this modified FRG scheme leads to quantitatively better results for intermediate Coulomb interactions (beyond second order).
-
-
-
-
54
-
-
64649085474
-
-
10.1103/PhysRevLett.102.136805
-
V. Kashcheyevs, C. Karrasch, T. Hecht, A. Weichselbaum, V. Meden, and A. Schiller, Phys. Rev. Lett. 102, 136805 (2009). 10.1103/PhysRevLett.102.136805
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 136805
-
-
Kashcheyevs, V.1
Karrasch, C.2
Hecht, T.3
Weichselbaum, A.4
Meden, V.5
Schiller, A.6
|