메뉴 건너뛰기




Volumn , Issue , 2009, Pages 795-802

Automatic ovarian follicle quantification from 3D ultrasound data using global/local context with database guided segmentation

Author keywords

[No Author keywords available]

Indexed keywords

3-D ULTRASOUND; CLINICAL WORKFLOW; DATABASE-GUIDED SEGMENTATION; GLOBAL/LOCAL; HIGH DIMENSIONAL SPACES; HIGH ROBUSTNESS; MARGINAL SPACE LEARNING; MULTIPLE OBJECTS; OVARIAN FOLLICLES; PROBABILISTIC FRAMEWORK;

EID: 77953203983     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459243     Document Type: Conference Paper
Times cited : (29)

References (24)
  • 1
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images
    • Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. ICCV, 1:105-112, 2001.
    • (2001) ICCV , vol.1 , pp. 105-112
    • Boykov, Y.1    Jolly, M.P.2
  • 2
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligience, 26(9):1124-1137, 2004.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligience , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 3
    • 51949114047 scopus 로고    scopus 로고
    • Semantic-based indexing of fetal anatomies from 3-d ultrasound data using global/semi-local context and sequential sampling
    • G. Carneiro, F. Amat, B. Georgescu, S. Good, and D. Comaniciu. Semantic-based indexing of fetal anatomies from 3-d ultrasound data using global/semi-local context and sequential sampling. CVPR, 2008.
    • (2008) CVPR
    • Carneiro, G.1    Amat, F.2    Georgescu, B.3    Good, S.4    Comaniciu, D.5
  • 4
    • 3142688899 scopus 로고    scopus 로고
    • Segmentation of ovarian ultrsound images using cellular neural networks
    • B. Cigale and D. Zazula. Segmentation of ovarian ultrsound images using cellular neural networks. IJPARI, 18(4):563-581, 2004.
    • (2004) IJPARI , vol.18 , Issue.4 , pp. 563-581
    • Cigale, B.1    Zazula, D.2
  • 7
    • 28844501315 scopus 로고    scopus 로고
    • 3- and 4-dimensional ultrasound in obstetrics and gynecology - proceedings of the american institute of ultrasound in medicine consensus conference
    • B. B. et.al. 3- and 4-dimensional ultrasound in obstetrics and gynecology - proceedings of the american institute of ultrasound in medicine consensus conference. J. Ultrasound Med., 25:1587-1597, 2005.
    • (2005) J. Ultrasound Med. , vol.25 , pp. 1587-1597
    • B, B.1
  • 8
    • 33745128094 scopus 로고    scopus 로고
    • Interactive graph cut based segmentation with shape priors
    • D. Freedman and T. Zhang. Interactive graph cut based segmentation with shape priors. CVPR, 2005.
    • (2005) CVPR
    • Freedman, D.1    Zhang, T.2
  • 10
    • 33846563365 scopus 로고    scopus 로고
    • Quaternions in molecular modeling
    • C. F. F. Karney. Quaternions in molecular modeling. J.MOL.GRAPH.MOD., 25:595-604, 2006.
    • (2006) J.MOL.GRAPH.MOD. , vol.25 , pp. 595-604
    • Karney, C.F.F.1
  • 11
    • 0032216606 scopus 로고    scopus 로고
    • Ovarian ultrasound image analysis: Follicle segmentation
    • A. Krivanek and M. Sonka. Ovarian ultrasound image analysis: follicle segmentation. IEEE Transactions on Medical Imaging, 17(6):56-69, 1998.
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.6 , pp. 56-69
    • Krivanek, A.1    Sonka, M.2
  • 12
    • 34748819902 scopus 로고    scopus 로고
    • Segmentation of ovarian ultrsound images using single template cellular neural networks trained with support vector machines
    • M. Lenic, D. Zazula, and B. Cigale. Segmentation of ovarian ultrsound images using single template cellular neural networks trained with support vector machines. CBMS, pages 205-212, 2007.
    • (2007) CBMS , pp. 205-212
    • Lenic, M.1    Zazula, D.2    Cigale, B.3
  • 14
    • 33745155997 scopus 로고    scopus 로고
    • A multilevel graph cuts method for fast image segmentation
    • H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel graph cuts method for fast image segmentation. ICCV, 2005.
    • (2005) ICCV
    • Lombaert, H.1    Sun, Y.2    Grady, L.3    Xu, C.4
  • 16
    • 0036069209 scopus 로고    scopus 로고
    • The xultra project - Automated analysis of ovarian ultrasound images
    • B. Potocnik and D. Zazula. The xultra project - automated analysis of ovarian ultrasound images. CBMS, pages 262-267, 2002.
    • (2002) CBMS , pp. 262-267
    • Potocnik, B.1    Zazula, D.2
  • 17
    • 38049156317 scopus 로고    scopus 로고
    • Automated follicle tracking facilitates standardization and may improve work flow
    • N. Raine-Fenning, K. Jayaprakasan, and J. Clewes. Automated follicle tracking facilitates standardization and may improve work flow. Ultrasound Obstet Gynecol, 30:1015-1018, 2007.
    • (2007) Ultrasound Obstet Gynecol , vol.30 , pp. 1015-1018
    • Raine-Fenning, N.1    Jayaprakasan, K.2    Clewes, J.3
  • 19
    • 74949136511 scopus 로고    scopus 로고
    • Prospective cohort study of three- Versus two-dimensional ultrasound for prediction of oocyte maturity
    • D. Shmorgun, E. Hughes, P. Mohide, and R. Roberts. Prospective cohort study of three- versus two-dimensional ultrasound for prediction of oocyte maturity. Fertil Steril, 2009.
    • (2009) Fertil Steril
    • Shmorgun, D.1    Hughes, E.2    Mohide, P.3    Roberts, R.4
  • 20
    • 77953224612 scopus 로고    scopus 로고
    • Graph cut segmentation using an elliptical shape prior
    • G. Slabaugh and G. Unal. Graph cut segmentation using an elliptical shape prior. ICIP, 2004.
    • (2004) ICIP
    • Slabaugh, G.1    Unal, G.2
  • 21
    • 47249145633 scopus 로고    scopus 로고
    • Graph cut based multiple view segmentation for 3d reconstruction
    • M. Sormann, C. Zach, and K. Karner. Graph cut based multiple view segmentation for 3d reconstruction. 3DPVT, 2006.
    • (2006) 3DPVT
    • Sormann, M.1    Zach, C.2    Karner, K.3
  • 23
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Z. Tu. Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. ICCV, II:1589-1596, 2005.
    • (2005) ICCV , vol.2 , pp. 1589-1596
    • Tu, Z.1
  • 24
    • 50649107002 scopus 로고    scopus 로고
    • Fast automatic heart chamber segmentation from 3d ct data using marginal space learning and steerable features
    • Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Fast automatic heart chamber segmentation from 3d ct data using marginal space learning and steerable features. ICCV, 2007.
    • (2007) ICCV
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.