메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2090-2097

SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; FASTER CONVERGENCE; LOCAL FEATURE; MAIN COMPONENT; ORDERS OF MAGNITUDE; PARAMETER-TUNING; RUNTIMES; SPATIAL CONSISTENCY; SPEED-UPS;

EID: 77953201614     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459459     Document Type: Conference Paper
Times cited : (178)

References (26)
  • 2
    • 84898435987 scopus 로고    scopus 로고
    • An Effective Bail-Out Test for RANSAC Consensus Scoring
    • D. Capel. An Effective Bail-Out Test for RANSAC Consensus Scoring. In BMVC'05, 2005.
    • (2005) BMVC'05
    • Capel, D.1
  • 3
    • 51949087941 scopus 로고    scopus 로고
    • Efficient sequential correspondence selection by cosegmentation
    • J. Cech, J. Matas, and M. Perdoch. Efficient sequential correspondence selection by cosegmentation. In CVPR'08, 2008.
    • (2008) CVPR'08
    • Cech, J.1    Matas, J.2    Perdoch, M.3
  • 4
    • 24644499558 scopus 로고    scopus 로고
    • Matching with PROSAC - Progressive Sample Consensus
    • O. Chum and J. Matas. Matching with PROSAC - Progressive Sample Consensus. In CVPR'05, 2005.
    • (2005) CVPR'05
    • Chum, O.1    Matas, J.2
  • 5
    • 46149125074 scopus 로고    scopus 로고
    • Optimal Randomized RANSAC
    • O. Chum and J. Matas. Optimal Randomized RANSAC. PAMI, 30(8):1472-1482, 2008.
    • (2008) PAMI , vol.30 , Issue.8 , pp. 1472-1482
    • Chum, O.1    Matas, J.2
  • 6
    • 10044243101 scopus 로고    scopus 로고
    • Enhancing RANSAC by Generalized Model Optimization
    • O. Chum, J. Matas, and S. Obdržálek. Enhancing RANSAC by Generalized Model Optimization. In ACCV'04, 2004.
    • (2004) ACCV'04
    • Chum, O.1    Matas, J.2    Obdržálek, S.3
  • 7
    • 70450192888 scopus 로고    scopus 로고
    • Geometric min-Hashing: Finding a (Thick) Needle in a Haystack
    • O. Chum, M. Perdoch, and J. Matas. Geometric min-Hashing: Finding a (Thick) Needle in a Haystack. In CVPR'09, 2009.
    • (2009) CVPR'09
    • Chum, O.1    Perdoch, M.2    Matas, J.3
  • 8
    • 10044250925 scopus 로고    scopus 로고
    • Epipolar Geometry Estimation via RANSAC Benefits from the Oriented Epipolar Constraint
    • O. Chum, T Werner, and J. Matas. Epipolar Geometry Estimation via RANSAC Benefits from the Oriented Epipolar Constraint. In ICPR'04, 2004.
    • (2004) ICPR'04
    • Chum, O.1    Werner, T.2    Matas, J.3
  • 9
    • 33745179567 scopus 로고    scopus 로고
    • Two-View Geometry Estimation Unaffected by a Dominant Plane
    • O. Chum, T Werner, and J. Matas. Two-View Geometry Estimation Unaffected by a Dominant Plane. In CVPR, 2005.
    • (2005) CVPR
    • Chum, O.1    Werner, T.2    Matas, J.3
  • 10
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM, 24(6), 1981.
    • (1981) Comm. ACM , vol.24 , Issue.6
    • Fischler, M.1    Bolles, R.2
  • 11
    • 33845590625 scopus 로고    scopus 로고
    • RANSAC for (Quasi-) Degenerate data (QDEGSAC)
    • J.-M. Frahm and M. Pollefeys. RANSAC for (Quasi-) Degenerate data (QDEGSAC). In CVPR'06, 2006.
    • (2006) CVPR'06
    • Frahm, J.-M.1    Pollefeys, M.2
  • 13
    • 0034844984 scopus 로고    scopus 로고
    • A Robust Interest Points Matching Algorithm
    • I. Jung and S. Lacroix. A Robust Interest Points Matching Algorithm. In ICCV'01, 2001.
    • (2001) ICCV'01
    • Jung, I.1    Lacroix, S.2
  • 14
    • 34948853228 scopus 로고    scopus 로고
    • Keypoint Descriptors for Matching Across Multiple Image Modalities and Non-linear Intensity Variations
    • A. Kelman, M. Sofka, and C. V. Stewart. Keypoint Descriptors for Matching Across Multiple Image Modalities and Non-linear Intensity Variations. In CVPR'07, 2007.
    • (2007) CVPR'07
    • Kelman, A.1    Sofka, M.2    Stewart, C.V.3
  • 15
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 16
    • 3142780205 scopus 로고    scopus 로고
    • Randomized RANSAC with T(d,d) test
    • J. Matas and O. Chum. Randomized RANSAC with T(d,d) test. Image and Vision Computing, 22(10):837-842, 2004.
    • (2004) Image and Vision Computing , vol.22 , Issue.10 , pp. 837-842
    • Matas, J.1    Chum, O.2
  • 18
    • 0012454884 scopus 로고    scopus 로고
    • NAPSAC: High Noise, High Dimensional Robust Estimation - It's in the Bag
    • D. Myatt, R Torr, S. Nasuto, J. Bishop, and R. Craddock. NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag. In BMVC'02, 2002.
    • (2002) BMVC'02
    • Myatt, D.1    Torr, R.2    Nasuto, S.3    Bishop, J.4    Craddock, R.5
  • 19
    • 0344551922 scopus 로고    scopus 로고
    • Preemptive RANSAC for Live Structure and Motion Estimation
    • D. Nistér. Preemptive RANSAC for Live Structure and Motion Estimation. In ICCV'03, 2003.
    • (2003) ICCV'03
    • Nistér, D.1
  • 21
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR'07, 2007.
    • (2007) CVPR'07
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 22
    • 40949155911 scopus 로고    scopus 로고
    • Detailed real-time urban 3d reconstruction from video
    • 19 authors
    • M. Pollefeys et al.(19 authors). Detailed real-time urban 3d reconstruction from video. IJCV, 78:143-167, 2008.
    • (2008) IJCV , vol.78 , pp. 143-167
    • Pollefeys, M.1
  • 23
    • 70450153768 scopus 로고    scopus 로고
    • A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus
    • R. Raguram, J.-M. Frahm, and M. Pollefeys. A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In ECCV'08, 2008.
    • (2008) ECCV'08
    • Raguram, R.1    Frahm, J.-M.2    Pollefeys, M.3
  • 24
    • 0033894631 scopus 로고    scopus 로고
    • MLESAC: A new robust estimator with application to estimating image geometry
    • P. Torr and A. Zisserman. MLESAC: a new robust estimator with application to estimating image geometry. CVIU, 78(1): 138-156, 2000.
    • (2000) CVIU , vol.78 , Issue.1 , pp. 138-156
    • Torr, P.1    Zisserman, A.2
  • 25
    • 70450164332 scopus 로고    scopus 로고
    • Bundling Features for Large Scale Partial-Duplicate Web Image Search
    • Z. Wu, Q. Ke, M. Isard, and J. Sun. Bundling Features for Large Scale Partial-Duplicate Web Image Search. In CVPR'09, 2009.
    • (2009) CVPR'09
    • Wu, Z.1    Ke, Q.2    Isard, M.3    Sun, J.4
  • 26
    • 0029388810 scopus 로고
    • A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry
    • Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry. AI Journal, 78(1-2), 1995.
    • (1995) AI Journal , vol.78 , Issue.1-2
    • Zhang, Z.1    Deriche, R.2    Faugeras, O.3    Luong, Q.-T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.