메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1346-1353

A family of online boosting algorithms

Author keywords

[No Author keywords available]

Indexed keywords

BOOSTING ALGORITHM; DATA SETS; FLEXIBLE FRAMEWORK; GRADIENT BOOSTING; LEAST SQUARES REGRESSION; LOGISTIC REGRESSIONS; MACHINE-LEARNING; MULTIPLE INSTANCE LEARNING; ON-LINE BOOSTING; SEMI-SUPERVISED LEARNING;

EID: 77953195665     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2009.5457453     Document Type: Conference Paper
Times cited : (23)

References (32)
  • 1
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, pages 561-568. 2002.
    • (2002) NIPS , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
    • 84945797434 scopus 로고
    • Dynamic Node Creation in Backpropagation Networks
    • T. Ash. Dynamic Node Creation in Backpropagation Networks. Connection Science, 1(4):365-375, 1989.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 3
    • 70450188146 scopus 로고    scopus 로고
    • Visual Tracking with Online Multiple Instance Learning
    • B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009.
    • (2009) CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 4
    • 0013309537 scopus 로고    scopus 로고
    • On-line learning and stochastic approximations
    • D. Saad, editor, Cambridge University Press
    • L. Bottou. On-line learning and stochastic approximations. In D. Saad, editor, On-Line Learning in Neural Networks, pages 9-42. Cambridge University Press, 1999.
    • (1999) On-Line Learning in Neural Networks , pp. 9-42
    • Bottou, L.1
  • 5
    • 85042678229 scopus 로고    scopus 로고
    • FilterBoost: Regression and Classification on Large Datasets
    • J. Bradley and R. Schapire. FilterBoost: Regression and Classification on Large Datasets. In NIPS, 2007.
    • (2007) NIPS
    • Bradley, J.1    Schapire, R.2
  • 7
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and Decremental Support Vector Machine Learning
    • G. Cauwenberghs and T. Poggio. Incremental and Decremental Support Vector Machine Learning. In NIPS, pages 409-415. 2001.
    • (2001) NIPS , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 8
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • ACM New York, NY, USA
    • W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer learning. In ICML, pages 193-200. ACM New York, NY, USA, 2007.
    • (2007) ICML , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.3    Yu, Y.4
  • 9
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple-instance problem with axis parallel rectangles. Artificial Intelligence, 89(1-2):31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189-1232, 2001.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 14
    • 33845570001 scopus 로고    scopus 로고
    • On-line boosting and vision
    • H. Grabner and H. Bischof. On-line boosting and vision. In CVPR, pages 260-267. 2006.
    • (2006) CVPR , pp. 260-267
    • Grabner, H.1    Bischof, H.2
  • 15
    • 56749152262 scopus 로고    scopus 로고
    • Semi-Supervised On-line Boosting for Robust Tracking?
    • H. Grabner, C. Leistner, and H. Bischof. Semi-Supervised On-line Boosting for Robust Tracking? In ECCV, pages 234-247, 2008.
    • (2008) ECCV , pp. 234-247
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 16
    • 28244499387 scopus 로고    scopus 로고
    • Semi-Supervised MarginBoost
    • Y. Grandvalet and C. Ambroise. Semi-Supervised MarginBoost. In NIPS, pages 553-560. 2002.
    • (2002) NIPS , pp. 553-560
    • Grandvalet, Y.1    Ambroise, C.2
  • 20
    • 85081805923 scopus 로고    scopus 로고
    • Incremental learning for visual tracking
    • J. Lim, D. Ross, R. Lin, and M.-H. Yang. Incremental learning for visual tracking. NIPS, 17:793-800, 2005.
    • (2005) NIPS , vol.17 , pp. 793-800
    • Lim, J.1    Ross, D.2    Lin, R.3    Yang, M.-H.4
  • 21
    • 50649114155 scopus 로고    scopus 로고
    • Gradient feature selection for online boosting
    • X. Liu and T. Yu. Gradient feature selection for online boosting. In ICCV. 2007.
    • (2007) ICCV
    • Liu, X.1    Yu, T.2
  • 22
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in function space. In NIPS, volume 12, pages 512-518, 2000.
    • (2000) NIPS , vol.12 , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 23
    • 1942483164 scopus 로고    scopus 로고
    • Ph.D. Thesis, University of California Berkeley
    • N. C. Oza. Online Ensemble Learning. Ph.D. Thesis, University of California, Berkeley, 2001.
    • (2001) Online Ensemble Learning
    • Oza, N.C.1
  • 24
    • 31844448950 scopus 로고    scopus 로고
    • Supervised versus multiple instance learning: An empirical comparison
    • S. Ray and M. Craven. Supervised versus multiple instance learning: an empirical comparison. ICML, pages 697-704, 2005.
    • (2005) ICML , pp. 697-704
    • Ray, S.1    Craven, M.2
  • 25
    • 11144273669 scopus 로고
    • The perceptron
    • F. Rosenblatt. The perceptron. Psychical Review, 65(6):386-408, 1958.
    • (1958) Psychical Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 26
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533-536, 1986.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 27
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 28
    • 0031246271 scopus 로고    scopus 로고
    • Decision Tree Induction Based on Efficient Tree Restructuring
    • P. Utgoff, N. Berkman, and J. Clouse. Decision Tree Induction Based on Efficient Tree Restructuring. Mach. Learn., 29(1):5-44, 1997.
    • (1997) Mach. Learn. , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.1    Berkman, N.2    Clouse, J.3
  • 29
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, pages 1417-1424. 2006.
    • (2006) NIPS , pp. 1417-1424
    • Viola, P.1    Platt, J.2    Zhang, C.3
  • 31
    • 84898985725 scopus 로고    scopus 로고
    • A gradient-based boosting algorithm for regression problems
    • R. Zemel and T. Pitassi. A gradient-based boosting algorithm for regression problems. In NIPS, pages 696-702. 2001.
    • (2001) NIPS , pp. 696-702
    • Zemel, R.1    Pitassi, T.2
  • 32
    • 0037355948 scopus 로고    scopus 로고
    • Sequential greedy approximation for certain convex optimization problems
    • T. Zhang. Sequential greedy approximation for certain convex optimization problems. IEEE Trans. on Inf. Theory, 49(3):682-691, 2003.
    • (2003) IEEE Trans. on Inf. Theory , vol.49 , Issue.3 , pp. 682-691
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.