메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2122-2129

Unsupervised learning of high-order structural semantics from images

Author keywords

[No Author keywords available]

Indexed keywords

3D RECONSTRUCTION; COMBINATORIAL SEARCH; GEOMETRIC RELATIONSHIPS; HIGH-ORDER; IMAGE COLLECTIONS; MAN MADE OBJECTS; MAXIMAL MATCHINGS; PATTERN MINING; REPEATED PATTERNS; SCENE UNDERSTANDING; SPATIAL PROXIMITY; SPATIAL RELATIONSHIPS; STRUCTURAL SEMANTICS; VISUAL ELEMENTS; VISUAL PATTERN;

EID: 77953187570     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459465     Document Type: Conference Paper
Times cited : (26)

References (22)
  • 2
    • 50649095125 scopus 로고    scopus 로고
    • Extracting texels in 2.1d natural textures
    • 2
    • N. Ahuja and S. Todorovic. Extracting texels in 2.1d natural textures. ICCV, 2007. 2
    • (2007) ICCV
    • Ahuja, N.1    Todorovic, S.2
  • 3
    • 36248986636 scopus 로고    scopus 로고
    • Flexible spatial configuration of local image features
    • 3
    • G. Carneiro and A. D. Jepson. Flexible spatial configuration of local image features. PAMI, 29(12):2089-2104, 2007. 3
    • (2007) PAMI , vol.29 , Issue.12 , pp. 2089-2104
    • Carneiro, G.1    Jepson, A.D.2
  • 4
    • 33745822716 scopus 로고    scopus 로고
    • Sparse flexible models of local features
    • 1, 2
    • G. Carneiro and D. Lowe. Sparse flexible models of local features. In ECCV, pages 29-43, 2006. 1, 2
    • (2006) ECCV , pp. 29-43
    • Carneiro, G.1    Lowe, D.2
  • 5
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • 1, 2
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, pages 55-79, 2005. 1, 2
    • (2005) IJCV , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 6
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • 1, 2
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, 2003. 1, 2
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 7
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • 1, 2
    • R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaustive recognition. In CVPR, 2005. 1, 2
    • (2005) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 8
    • 33845587088 scopus 로고    scopus 로고
    • Discovering texture regularity as a higher-order correspondence problem
    • 2
    • J. H. Hays, M. Leordeanu, A. A. Efros, and Y. Liu. Discovering texture regularity as a higher-order correspondence problem. ECCV, 2006. 2
    • (2006) ECCV
    • Hays, J.H.1    Leordeanu, M.2    Efros, A.A.3    Liu, Y.4
  • 9
    • 50649100341 scopus 로고    scopus 로고
    • Learning structured appearance models from captioned images of cluttered scenes
    • Oct. 3
    • M. Jamieson, A. Fazly, S. Dickinson, S. Stevenson, and S.Wachsmuth. Learning structured appearance models from captioned images of cluttered scenes. ICCV, pages 1-8, Oct. 2007. 3
    • (2007) ICCV , pp. 1-8
    • Jamieson, M.1    Fazly, A.2    Dickinson, S.3    Stevenson, S.4    Wachsmuth, S.5
  • 10
    • 52649106981 scopus 로고    scopus 로고
    • Sparclus: Spatial relationship pattern-based hierarchial clustering
    • 2
    • S. Kim, X. Jin, and J. Han. Sparclus: Spatial relationship pattern-based hierarchial clustering. In SDM, pages 49-60, 2008. 2
    • (2008) SDM , pp. 49-60
    • Kim, S.1    Jin, X.2    Han, J.3
  • 11
    • 27944453480 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph*
    • 5
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph*. Data Min. Knowl. Discov., 11(3):243-271, 2005. 5
    • (2005) Data Min. Knowl. Discov. , vol.11 , Issue.3 , pp. 243-271
    • Kuramochi, M.1    Karypis, G.2
  • 12
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 6
    • R. F. L. Fei-Fei and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. CVPR 2004, Workshop on Generative-Model Based Vision, 2004. 6
    • CVPR 2004 Workshop on Generative-Model Based Vision, 2004
    • Fei-Fei, R.F.L.1    Perona, P.2
  • 13
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 3
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004. 3
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 14
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • 2
    • D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. CVPR, 2006. 2
    • (2006) CVPR
    • Nister, D.1    Stewenius, H.2
  • 16
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • 2
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. CVPR, 2007. 2
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 17
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • 2
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. ICCV, 2003. 2
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 20
    • 78149333073 scopus 로고    scopus 로고
    • Gspan: Graph-based substructure pattern mining
    • Washington, DC, USA, IEEE Computer Society. 5
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, page 721, Washington, DC, USA, 2002. IEEE Computer Society. 5
    • (2002) ICDM , pp. 721
    • Yan, X.1    Han, J.2
  • 21
    • 50649111840 scopus 로고    scopus 로고
    • Spatial random partition for common visual pattern discovery
    • 6
    • J. Yuan and Y. Wu. Spatial random partition for common visual pattern discovery. In ICCV, pages 1-8, 2007. 6
    • (2007) ICCV , pp. 1-8
    • Yuan, J.1    Wu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.