-
4
-
-
52649136576
-
Similarity measures for categorical data: A comparative evaluation
-
Atlanta, GA., April
-
S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A comparative evaluation. In In Proceedings of 2008 SIAM Data Mining Conference, pages 243-254, Atlanta, GA., April 2008.
-
(2008)
In Proceedings of 2008 SIAM Data Mining Conference
, pp. 243-254
-
-
Boriah, S.1
Chandola, V.2
Kumar, V.3
-
5
-
-
72849132071
-
A framework for exploring categorical data
-
V. Chandola, S. Boriah, and V. Kumar. A framework for exploring categorical data. In In Proceedings of 2009 SIAM Data Mining Conference, Sparks, NV, 1-13 October 2009.
-
In Proceedings of 2009 SIAM Data Mining Conference, Sparks, NV, 1-13 October 2009
-
-
Chandola, V.1
Boriah, S.2
Kumar, V.3
-
6
-
-
65449143380
-
Anomaly pattern detection in categorical datasets
-
K. Das, J. Schneider, and D. B. Neill. Anomaly pattern detection in categorical datasets. In KDD'08, pages 169-176, 2008.
-
(2008)
KDD'08
, pp. 169-176
-
-
Das, K.1
Schneider, J.2
Neill, D.B.3
-
10
-
-
34249307704
-
Fp-outlier: Frequent pattern based outlier detection
-
Z. He, X. Xu, J. Z. Huang, and S. Deng. Fp-outlier: Frequent pattern based outlier detection. Computer Science and Information Systems (COMSIS), 2:726-732, 2005.
-
(2005)
Computer Science and Information Systems (COMSIS)
, vol.2
, pp. 726-732
-
-
He, Z.1
Xu, X.2
Huang, J.Z.3
Deng, S.4
-
12
-
-
33644860127
-
A clustering-based method for unsupervised intrusion detections
-
S. Y. Jiang, X. Song, H. Wang, J. J. Han, and Q. H. Li. A clustering-based method for unsupervised intrusion detections. Pattern Recognition Letters, 27:802-810, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 802-810
-
-
Jiang, S.Y.1
Song, X.2
Wang, H.3
Han, J.J.4
Li, Q.H.5
-
13
-
-
62649086136
-
Detecting outliers in high-dimensional datasets with mixed attributes
-
A. Koufakou, M. Georgiopoulos, and G. Anagnostopoulos. Detecting outliers in high-dimensional datasets with mixed attributes. In International Conference on Data Mining (DMIN 2008), L.Vegas,NV, 14-17 2008.
-
International Conference on Data Mining (DMIN 2008), L.Vegas,NV, 14-17 2008
-
-
Koufakou, A.1
Georgiopoulos, M.2
Anagnostopoulos, G.3
-
14
-
-
48649108236
-
A scalable and efficient outlier detection strategy for categorical data
-
A. Koufakou, E. Ortiz, M. Georgiopoulos, G. Anagnostopoulos, and K. Reynolds. A scalable and efficient outlier detection strategy for categorical data. In IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Patras-Peloponnese-Greece, 29-31 October 2007.
-
IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Patras-Peloponnese-Greece, 29-31 October 2007
-
-
Koufakou, A.1
Ortiz, E.2
Georgiopoulos, M.3
Anagnostopoulos, G.4
Reynolds, K.5
-
15
-
-
32544437877
-
An outlier-based data association method for linking criminal incidents
-
604âǍŞ-615, March
-
S. Lin and D. E. Brown. An outlier-based data association method for linking criminal incidents. Decision Support Systems, 41: 604âǍŞ-615, March 2006.
-
(2006)
Decision Support Systems
, vol.41
-
-
Lin, S.1
Brown, D.E.2
-
16
-
-
43749105806
-
Detecting outliers in categorical record databases based on attribute associations
-
K. Narita and H. Kitagawa. Detecting outliers in categorical record databases based on attribute associations. Progress in WWW Research and Development, 4976:111-123, 2008.
-
(2008)
Progress in WWW Research and Development
, vol.4976
, pp. 111-123
-
-
Narita, K.1
Kitagawa, H.2
-
17
-
-
33646553013
-
Fast distributed outlier detection in mixed-attribute data sets
-
May
-
M. E. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed outlier detection in mixed-attribute data sets. Data Mining and Knowledge Discovery, 12(2-3):203-228, May 2006.
-
(2006)
Data Mining and Knowledge Discovery
, vol.12
, Issue.2-3
, pp. 203-228
-
-
Otey, M.E.1
Ghoting, A.2
Parthasarathy, S.3
-
18
-
-
0035788943
-
Detecting graph-based spatial outliers: Algorithms and applications
-
San Francisco, California
-
S. Shekhar, C. T. Lu, and Pusheng Zhang. Detecting graph-based spatial outliers: algorithms and applications. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 371-376, San Francisco, California, 2001.
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 371-376
-
-
Shekhar, S.1
Lu, C.T.2
Zhang, P.3
-
19
-
-
27144530995
-
Handling nominal features in anomaly intrusion detection problems
-
M. Shyu, K. Sarinnapakorn, I. Kuruppu-Appuhamilage, S. Chen, L. W. Chang, and T. Goldring. Handling nominal features in anomaly intrusion detection problems. In International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, pages 55-62, 2005.
-
(2005)
International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications
, pp. 55-62
-
-
Shyu, M.1
Sarinnapakorn, K.2
Kuruppu-Appuhamilage, I.3
Chen, S.4
Chang, L.W.5
Goldring, T.6
|