메뉴 건너뛰기




Volumn 14, Issue 3, 2010, Pages 664-674

Bayesian methods for fMRI time-series analysis using a nonstationary model for the noise

Author keywords

Drift removal; Functional MRI (fMRI) time series; Generalized linear model (GLM); Nonstationary noise model; Variational Bayesian (VB) methodology

Indexed keywords

FUNCTIONAL MRI (FMRI); FUNCTIONAL MRI (FMRI) TIME SERIES; GENERALIZED LINEAR MODEL; NONSTATIONARY NOISE; VARIATIONAL BAYESIAN;

EID: 77953157010     PISSN: 10897771     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITB.2009.2039712     Document Type: Article
Times cited : (14)

References (33)
  • 3
    • 0028998867 scopus 로고
    • Analysis of fMRI time series revisited
    • K. Friston, "Analysis of fMRI time series revisited," Neuroimage, vol.2, pp. 45-53, 1995.
    • (1995) Neuroimage , vol.2 , pp. 45-53
    • Friston, K.1
  • 4
  • 5
    • 0036334982 scopus 로고    scopus 로고
    • Classical and Bayesian inference in neuroimaging: Theory
    • DOI 10.1006/nimg.2002.1090
    • K. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ashburner, "Classical and bayesian inference in neuroimaging: Theory," NeuroImage, vol.16, pp. 465-483, Jun. 2002. (Pubitemid 34852462)
    • (2002) NeuroImage , vol.16 , Issue.2 , pp. 465-483
    • Friston, K.J.1    Penny, W.2    Phillips, C.3    Kiebel, S.4    Hinton, G.5    Ashburner, J.6
  • 6
    • 0036335090 scopus 로고    scopus 로고
    • Classical and Bayesian inference in neuroimaging: Applications
    • DOI 10.1006/nimg.2002.1091
    • K. Friston, D. Glaser, R. Henson, S. Kiebel, C. Phillips, and J. Ashburner, "Classical and bayesian inference in neuroimaging: Applications," NeuroImage, vol.16, pp. 484-512, Jun. 2002. (Pubitemid 34852463)
    • (2002) NeuroImage , vol.16 , Issue.2 , pp. 484-512
    • Friston, K.J.1    Glaser, D.E.2    Henson, R.N.A.3    Kiebel, S.4    Phillips, C.5    Ashburner, J.6
  • 7
    • 0033233281 scopus 로고    scopus 로고
    • Application of bayesian inference to fMRI data analysis
    • Dec
    • J.Kershaw, B.Ardekani, and I.Kanno, "Application of bayesian inference to fMRI data analysis," IEEE Trans.Med. Imag., vol.18, no.12, pp. 1138- 1153, Dec. 1999.
    • (1999) IEEE Trans.Med. Imag , vol.18 , Issue.12 , pp. 1138-1153
    • Kershaw, J.1    Ardekani, B.2    Kanno, I.3
  • 8
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • DOI 10.1016/S1053-8119(03)00071-5
    • W. Penny, S. Kiebel, and K. Friston, "Variational bayesian inference for fMRI time series," NeuroImage, vol.19, pp. 727-741, Jul. 2003. (Pubitemid 36918216)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 9
    • 29344433832 scopus 로고    scopus 로고
    • A sparse bayesian method for determination of flexible design matrix for fMRI data analysis
    • Dec
    • H. Luo and S. Puthusserypady, "A sparse bayesian method for determination of flexible design matrix for fMRI data analysis," IEEE Trans. Circuits Syst. I, Reg. Papers, vol.52, no.12, pp. 2699-2706, Dec. 2005.
    • (2005) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.52 , Issue.12 , pp. 2699-2706
    • Luo, H.1    Puthusserypady, S.2
  • 10
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-A review of practical bayesians methods for supervised neural networks
    • D. MacKay, "Probable networks and plausible predictions-A review of practical bayesians methods for supervised neural networks," Netw.: Comput. Neural Syst., vol.6, pp. 469-505, 1995.
    • (1995) Netw.: Comput. Neural Syst , vol.6 , pp. 469-505
    • MacKay, D.1
  • 12
    • 23744504166 scopus 로고    scopus 로고
    • Detecting and adjusting for artifacts in fMRI time series data
    • J. Diedrichsen and R. Shadmehr, "Detecting and adjusting for artifacts in fMRI time series data," NeuroImage, vol.27, no.3, pp. 624-634, 2005.
    • (2005) NeuroImage , vol.27 , Issue.3 , pp. 624-634
    • Diedrichsen, J.1    Shadmehr, R.2
  • 14
    • 34548119576 scopus 로고    scopus 로고
    • FMRI data analysis with nonstationary noise models: A bayesian approach
    • Sep
    • H. Luo and S. Puthusserypady, "fMRI data analysis with nonstationary noise models: A bayesian approach," IEEE Trans. Biomed. Eng., vol.54, no.9, pp. 1621-1630, Sep. 2007.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , Issue.9 , pp. 1621-1630
    • Luo, H.1    Puthusserypady, S.2
  • 15
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysiswith spatial priors
    • Jan
    • W. Penny, N. Trujillo-Barreto, and K. Friston, "Bayesian fMRI time series analysiswith spatial priors," NeuroImage, vol.24, pp. 350-362, Jan. 2005.
    • (2005) NeuroImage , vol.24 , pp. 350-362
    • Penny, W.1    Trujillo-Barreto, N.2    Friston, K.3
  • 16
    • 1342303479 scopus 로고    scopus 로고
    • Fully bayesian spatiotemporal modeling of fMRI data
    • Feb
    • M.Woolrich,M. Jenkinson, J. Brady, and S. Smith, "Fully bayesian spatiotemporal modeling of fMRI data," IEEE Trans.Med. Imag., vol.23, no.2, pp. 213-231, Feb. 2004.
    • (2004) IEEE Trans.Med. Imag , vol.23 , Issue.2 , pp. 213-231
    • Woolrich, M.1    Jenkinson, M.2    Brady, J.3    Smith, S.4
  • 20
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. MacKay, "Bayesian interpolation," Neural Comput., vol.4, pp. 415- 447, 1992.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • MacKay, D.J.1
  • 23
    • 2942614880 scopus 로고    scopus 로고
    • Detection and detrending in fMRI data analysis
    • O. Friman, M. Borga, P. Lundberg, and H. Knutsson, "Detection and detrending in fMRI data analysis," Neuroimage, vol.22, pp. 645-655, 2004.
    • (2004) Neuroimage , vol.22 , pp. 645-655
    • Friman, O.1    Borga, M.2    Lundberg, P.3    Knutsson, H.4
  • 24
    • 0037396577 scopus 로고    scopus 로고
    • Optimal spline smoothing of fMRI time series by generalized cross-validation
    • Apr
    • J. Carew, G. Wahba, X. Xie, E. Nordheim, and M. Meyerand, "Optimal spline smoothing of fMRI time series by generalized cross-validation," Neuroimage, vol.18, pp. 950-961, Apr. 2003.
    • (2003) Neuroimage , vol.18 , pp. 950-961
    • Carew, J.1    Wahba, G.2    Xie, X.3    Nordheim, E.4    Meyerand, M.5
  • 25
    • 0038660249 scopus 로고    scopus 로고
    • Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
    • Mar
    • F. Meyer, "Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series," IEEE Trans. Med. Imag., vol.22, no.3, pp. 315-322, Mar. 2003.
    • (2003) IEEE Trans. Med. Imag , vol.22 , Issue.3 , pp. 315-322
    • Meyer, F.1
  • 26
    • 42249101233 scopus 로고    scopus 로고
    • Analysis of fMRIdata with drift: Modified general linear model and bayesian estimator
    • May
    • H. Luo and S. Puthusserypady, "Analysis of fMRIdata with drift: Modified general linear model and bayesian estimator," IEEE Trans. Biomed. Eng., vol.55, no.5, pp. 1504-1511, May 2008.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , Issue.5 , pp. 1504-1511
    • Luo, H.1    Puthusserypady, S.2
  • 27
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • Jul
    • K. Friston and W. Penny, "Posterior probability maps and SPMs," NeuroImage, vol.19, pp. 1240-1249, Jul. 2003.
    • (2003) NeuroImage , vol.19 , pp. 1240-1249
    • Friston, K.1    Penny, W.2
  • 30
    • 0042237842 scopus 로고    scopus 로고
    • Estimation of general linear model coefficients for real-time application
    • E. Bagarinao, K. Matsuo, T. Nakai, and S. Sato, "Estimation of general linear model coefficients for real-time application," NeuroImage, vol.19, no.2, pp. 422-429, 2003.
    • (2003) NeuroImage , vol.19 , Issue.2 , pp. 422-429
    • Bagarinao, E.1    Matsuo, K.2    Nakai, T.3    Sato, S.4
  • 31
    • 34249306009 scopus 로고    scopus 로고
    • Real-time functional mri: Development and emerging applications
    • E. Bagarinao, T. Nakai, and Y. Tanaka, "Real-time functional mri: Development and emerging applications," Magn. Reson. Med. Sci., vol.5, no.3, pp. 157-165, 2006.
    • (2006) Magn. Reson. Med. Sci , vol.5 , Issue.3 , pp. 157-165
    • Bagarinao, E.1    Nakai, T.2    Tanaka, Y.3
  • 33
    • 58649112822 scopus 로고    scopus 로고
    • Variational bayesian inference for a nonlinear forward model
    • Jan
    • M. Chappell, A. Groves, B. Whitcher, and M. Woolrich, "Variational bayesian inference for a nonlinear forward model," IEEE Trans. Signal Process., vol.57, no.1, pp. 223-236, Jan. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.1 , pp. 223-236
    • Chappell, M.1    Groves, A.2    Whitcher, B.3    Woolrich, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.