메뉴 건너뛰기




Volumn 60, Issue 6, 2009, Pages 1475-1487

Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network

Author keywords

ANFIS; ANN; COD; Modelling; Wastewater treatment

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; AEROBIC BIOLOGICAL WASTEWATER TREATMENT; ANFIS; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL PROCESS; BIOLOGICAL WASTEWATER TREATMENT PLANT; COD REMOVAL; DETERMINATION COEFFICIENTS; ERROR RANGE; MODEL DEVELOPMENT; MODELLING METHOD; PERFORMANCE PREDICTION; WASTEWATER QUALITY PARAMETERS; WASTEWATER TREATMENT PLANTS;

EID: 77953145766     PISSN: 02731223     EISSN: None     Source Type: Journal    
DOI: 10.2166/wst.2009.482     Document Type: Article
Times cited : (38)

References (30)
  • 1
    • 52949138733 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of continuous wastewater treatment plants
    • Aguado, D. & Rosen, C. 2008 Multivariate statistical monitoring of continuous wastewater treatment plants. Eng. Appl. Artif. Intell. 21(7), 1080-1091.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.7 , pp. 1080-1091
    • Aguado, D.1    Rosen, C.2
  • 3
    • 22544446792 scopus 로고    scopus 로고
    • New tool for evaluation of performance of wastewater treatment plant: Artificial neural network
    • DOI 10.1016/j.procbio.2005.01.012, PII S1359511305001212
    • Çinar, Ö. 2005 New tool for evaluation of performance of wastewater treatment plant: artificial neural network. Process Biochem. 40(9), 2980-2984. (Pubitemid 41009196)
    • (2005) Process Biochemistry , vol.40 , Issue.9 , pp. 2980-2984
    • Cinar, O.1
  • 4
    • 38049083865 scopus 로고    scopus 로고
    • Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system
    • Civelekoglu, G., Perendeci, A., Yigit, N. O. & Kitis, M. 2007 Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system. Clean 35(6), 617-625.
    • (2007) Clean , vol.35 , Issue.6 , pp. 617-625
    • Civelekoglu, G.1    Perendeci, A.2    Yigit, N.O.3    Kitis, M.4
  • 6
    • 0032694625 scopus 로고    scopus 로고
    • Supervision of fed-batch fermentations
    • Gregersen, L. & Jørgensen, S. B. 1999 Supervision of fed-batch fermentations. Chem. Eng. J. 75, 69-76.
    • (1999) Chem. Eng. J. , vol.75 , pp. 69-76
    • Gregersen, L.1    Jørgensen, S.B.2
  • 9
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • DOI 10.1016/j.envsoft.2003.10.005, PII S1364815203002172
    • Hamed, M. M., Khalafallah, M. G. & Hassanien, E. A. 2004 Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 19, 919-928. (Pubitemid 38991765)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 12
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, R. J. S. 1993 ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, R.J.S.1
  • 15
    • 22944432533 scopus 로고    scopus 로고
    • Adaptive network-based fuzzy inference system (ANFIS) modeling for wastewater treatment
    • Karthikeyan, C., Sabarathinam, P. L. & Aruselvi, S. 2005 Adaptive network-based fuzzy inference system (ANFIS) modeling for wastewater treatment. Pollut. Res. 24(2), 353-358. (Pubitemid 41043325)
    • (2005) Pollution Research , vol.24 , Issue.2 , pp. 353-358
    • Karthikeyan, C.1    Sabarathinam, P.L.2    Aruselvi, S.3
  • 16
    • 12344295457 scopus 로고    scopus 로고
    • Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor
    • Lee, S. D., Park, J. M. & Vanrolleghem, P. A. 2005 Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. J. Biotechnol. 116, 195-210.
    • (2005) J. Biotechnol. , vol.116 , pp. 195-210
    • Lee, S.D.1    Park, J.M.2    Vanrolleghem, P.A.3
  • 17
    • 0036209691 scopus 로고    scopus 로고
    • Adaptive multiscale principal components analysis for online monitoring of wastewater treatment
    • Lennox, J. & Rosen, C. 2002 Adaptive multiscale principal components analysis for online monitoring of wastewater treatment. Water Sci. Technol. 45(4-5), 227-235. (Pubitemid 34256544)
    • (2002) Water Science and Technology , vol.45 , Issue.4-5 , pp. 227-235
    • Lennox, J.1    Rosen, C.2
  • 18
    • 77953144548 scopus 로고    scopus 로고
    • Hybrid intelligent systems for pattern recognition using soft computing
    • Melin, P. & Castillo, O. 2005 Hybrid intelligent systems for pattern recognition using soft computing. StudFuzz 172(55), 83.
    • (2005) StudFuzz , vol.172 , Issue.55 , pp. 83
    • Melin, P.1    Castillo, O.2
  • 20
    • 0031462176 scopus 로고    scopus 로고
    • Delivering environmental decision support systems: Software tools and techniques
    • DOI 10.1016/S1364-8152(97)00016-9, PII S1364815297000169
    • Rizzoli, A. E. & Young, W. J. 1997 Delivering environmental decision support systems: software tools and techniques. Environ. Model. Softw. 12, 237-249. (Pubitemid 28187032)
    • (1997) Environmental Modelling and Software , vol.12 , Issue.2-3 , pp. 237-249
    • Rizzoli, A.E.1    Young, W.J.2
  • 21
    • 0003425384 scopus 로고    scopus 로고
    • 20th edition, American Public Health Association/ American Water Works Association/Water Environment Federation, Washington, DC, USA
    • Standard Methods for the Examination of Water and Wastewater 1998 20th edition, American Public Health Association/ American Water Works Association/Water Environment Federation, Washington, DC, USA.
    • (1998) Standard Methods for the Examination of Water and Wastewater
  • 22
    • 0022700023 scopus 로고
    • Fuzzy modeling and control of multilayer incinerator
    • Sugeno, M. & Kang, J. T. 1986 Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets Syst. 18, 329-346.
    • (1986) Fuzzy Sets Syst. , vol.18 , pp. 329-346
    • Sugeno, M.1    Kang, J.T.2
  • 23
    • 0021314119 scopus 로고
    • Derivation of fuzzy control rules from human operators actions
    • Takagi, T. & Sugeno, M. 1983 Derivation of fuzzy control rules from human operators actions. Proc. IFAC Symp. on Fuzzy Information, pp. 55-60.
    • (1983) Proc. IFAC Symp. on Fuzzy Information , pp. 55-60
    • Takagi, T.1    Sugeno, M.2
  • 24
    • 0021892282 scopus 로고
    • Fuzzy identification systems and its application to modeling and control
    • Takagi, T. & Sugeno, M. 1985 Fuzzy identification systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 25
    • 0033377733 scopus 로고    scopus 로고
    • Neural fuzzy modeling of anaerobic biological wastewater treatment systems
    • DOI 10.1061/(ASCE)0733-9372(1999)125:12(1149)
    • Tay, J. H. & Zhang, X. 1999 Neural fuzzy modeling of anaerobic biological wastewater treatment systems. J. Environ. Eng. 125(12), 1149-1159. (Pubitemid 30083258)
    • (1999) Journal of Environmental Engineering , vol.125 , Issue.12 , pp. 1149-1159
    • Tay, J.-H.1    Zhang, X.2
  • 26
    • 0034256936 scopus 로고    scopus 로고
    • A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems
    • DOI 10.1016/S0043-1354(00)00057-9, PII S0043135400000579
    • Tay, J. H. & Zhang, X. 2000 A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 34(11), 2849-2860. (Pubitemid 30261444)
    • (2000) Water Research , vol.34 , Issue.11 , pp. 2849-2860
    • Tay, J.-H.1    Zhang, X.2
  • 27
    • 0032490672 scopus 로고    scopus 로고
    • Combined approach of partial least squares and fuzzy c-means clustering for the monitoring of an activated-sludge wastewater treatment plant
    • Teppola, S., Mujunen, P. & Minkkinen, A. 1998 Combined approach of partial least squares and fuzzy c-means clustering for the monitoring of an activated-sludge wastewater treatment plant. Chemometrics Intell. Lab. Syst. 41, 95-103.
    • (1998) Chemometrics Intell. Lab. Syst. , vol.41 , pp. 95-103
    • Teppola, S.1    Mujunen, P.2    Minkkinen, A.3
  • 28
    • 0037192009 scopus 로고    scopus 로고
    • Analysis of activated sludge process using multivariate statistical tools-A PCA approach
    • Tomita, R. K., Park, S. W. & Sotomayor, O. A. Z. 2002 Analysis of activated sludge process using multivariate statistical tools-a PCA approach. Chem. Eng. J. 90, 283-290.
    • (2002) Chem. Eng. J. , vol.90 , pp. 283-290
    • Tomita, R.K.1    Park, S.W.2    Sotomayor, O.A.Z.3
  • 29
    • 0032843977 scopus 로고    scopus 로고
    • Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process
    • DOI 10.1016/S0043-1354(99)00064-0, PII S0043135499000640
    • van Veldhuizen, H. M., van Loosdrecht, M. C. M. & Heijnen, J. J. 1999 Modeling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Res. 33, 3459-3468. (Pubitemid 29438585)
    • (1999) Water Research , vol.33 , Issue.16 , pp. 3459-3468
    • Van Veldhuizen, H.M.1    Van Loosdrecht, M.C.M.2    Heijnen, J.J.3
  • 30
    • 0141831911 scopus 로고    scopus 로고
    • Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plant
    • Yoo, C. K., Vanrolleghem, P. A. & Lee, I. B. 2003 Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plant. J. Biotechnol. 105, 135-163.
    • (2003) J. Biotechnol. , vol.105 , pp. 135-163
    • Yoo, C.K.1    Vanrolleghem, P.A.2    Lee, I.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.