-
1
-
-
0842270527
-
-
Springer-Verlag, Berlin, Germany
-
Du C., Xie L., and Zhang C. Control and Filtering of Two-Dimensional Systems (2002), Springer-Verlag, Berlin, Germany
-
(2002)
Control and Filtering of Two-Dimensional Systems
-
-
Du, C.1
Xie, L.2
Zhang, C.3
-
5
-
-
0028381817
-
Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities
-
Liu D., and Michel A.N. Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities. IEEE Trans. Circuits Syst.-I 41 (1994) 127-137
-
(1994)
IEEE Trans. Circuits Syst.-I
, vol.41
, pp. 127-137
-
-
Liu, D.1
Michel, A.N.2
-
6
-
-
0035340069
-
Stability analysis of 1D and 2D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities
-
Kar H., and Singh V. Stability analysis of 1D and 2D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities. IEEE Trans. Signal Process. 49 (2001) 1097-1105
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 1097-1105
-
-
Kar, H.1
Singh, V.2
-
7
-
-
20544458357
-
Stability analysis of 2D digital filters with saturation arithmetic: an LMI approach
-
Kar H., and Singh V. Stability analysis of 2D digital filters with saturation arithmetic: an LMI approach. IEEE Trans. Signal Process. 53 (2005) 2267-2271
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, pp. 2267-2271
-
-
Kar, H.1
Singh, V.2
-
8
-
-
34548563904
-
A new sufficient condition for the global asymptotic stability of 2D state-space digital filters with saturation arithmetic
-
Kar H. A new sufficient condition for the global asymptotic stability of 2D state-space digital filters with saturation arithmetic. Signal Process. 88 (2008) 86-98
-
(2008)
Signal Process.
, vol.88
, pp. 86-98
-
-
Kar, H.1
-
9
-
-
13244298252
-
Robust stability of 2D digital filters employing saturation
-
Singh V. Robust stability of 2D digital filters employing saturation. IEEE Signal Process. Lett. 12 (2005) 142-145
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, pp. 142-145
-
-
Singh, V.1
-
10
-
-
14644397240
-
Elimination of overflow oscillations in 2D digital filters employing saturation arithmetic: an LMI approach
-
Singh V. Elimination of overflow oscillations in 2D digital filters employing saturation arithmetic: an LMI approach. IEEE Signal Process. Lett. 12 (2005) 246-249
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, pp. 246-249
-
-
Singh, V.1
-
11
-
-
34548734709
-
Improved criterion for global asymptotic stability of 2D discrete systems with sate saturation
-
Singh V. Improved criterion for global asymptotic stability of 2D discrete systems with sate saturation. IEEE Signal Process. Lett. 14 (2007) 719-722
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, pp. 719-722
-
-
Singh, V.1
-
12
-
-
34548556987
-
New LMI condition for the nonexistence of overflow oscillations in 2D state-space digital filters using saturation arithmetic
-
Singh V. New LMI condition for the nonexistence of overflow oscillations in 2D state-space digital filters using saturation arithmetic. Digit. Signal Process. 17 (2007) 345-352
-
(2007)
Digit. Signal Process.
, vol.17
, pp. 345-352
-
-
Singh, V.1
-
13
-
-
46849086012
-
On global asymptotic stability of 2D discrete systems with sate saturation
-
Singh V. On global asymptotic stability of 2D discrete systems with sate saturation. Phys. Lett. A 372 (2008) 5287-5289
-
(2008)
Phys. Lett. A
, vol.372
, pp. 5287-5289
-
-
Singh, V.1
-
14
-
-
30344452617
-
Robust filtering for 2D state-delayed systems with NFT uncertainties
-
Chen S.-F., and Fong I.K. Robust filtering for 2D state-delayed systems with NFT uncertainties. IEEE Trans. Signal Process. 54 (2006) 274-285
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, pp. 274-285
-
-
Chen, S.-F.1
Fong, I.K.2
-
15
-
-
34447264478
-
∞ filtering for uncertain 2D state-delayed systems
-
∞ filtering for uncertain 2D state-delayed systems. Signal Process. 87 (2007) 2659-2672
-
(2007)
Signal Process.
, vol.87
, pp. 2659-2672
-
-
Chen, S.-F.1
Fong, I.K.2
-
18
-
-
1042288928
-
Robust stability and stabilization of 2D discrete state-delayed systems
-
Paszke W., Lam J., Gałkowski K., Xu S., and Lin Z. Robust stability and stabilization of 2D discrete state-delayed systems. Syst. Contr. Lett. 51 (2004) 277-291
-
(2004)
Syst. Contr. Lett.
, vol.51
, pp. 277-291
-
-
Paszke, W.1
Lam, J.2
Gałkowski, K.3
Xu, S.4
Lin, Z.5
-
19
-
-
67650504194
-
Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays
-
Ye S., Wang W., and Zou Y. Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays. Multi-dimensional Syst. Signal Process. 20 (2009) 297-307
-
(2009)
Multi-dimensional Syst. Signal Process.
, vol.20
, pp. 297-307
-
-
Ye, S.1
Wang, W.2
Zou, Y.3
-
20
-
-
33947380617
-
New results on stability of discrete-time systems with time-varying state delay
-
Gao H., and Chen T. New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Automat. Control 52 (2007) 328-333
-
(2007)
IEEE Trans. Automat. Control
, vol.52
, pp. 328-333
-
-
Gao, H.1
Chen, T.2
-
21
-
-
56549085214
-
Output feedback stabilization for a discrete-time system with a time-varying delay
-
He Y., Wu M., Liu G.-P., and She J.-H. Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Automat. Control 53 (2008) 2372-2377
-
(2008)
IEEE Trans. Automat. Control
, vol.53
, pp. 2372-2377
-
-
He, Y.1
Wu, M.2
Liu, G.-P.3
She, J.-H.4
-
22
-
-
38649083397
-
Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators
-
Qiu J., Xia Y., Yang H., and Zhang J. Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators. IET Control Theor. Appl. 2 (2008) 87-93
-
(2008)
IET Control Theor. Appl.
, vol.2
, pp. 87-93
-
-
Qiu, J.1
Xia, Y.2
Yang, H.3
Zhang, J.4
-
23
-
-
50349102303
-
Robust stability of discrete-time state-delayed systems employing generalized overflow nonlinearities
-
Kandanvli V.K.R., and Kar H. Robust stability of discrete-time state-delayed systems employing generalized overflow nonlinearities. Nonlinear Anal.-Theor. 69 (2008) 2780-2787
-
(2008)
Nonlinear Anal.-Theor.
, vol.69
, pp. 2780-2787
-
-
Kandanvli, V.K.R.1
Kar, H.2
-
24
-
-
54049156407
-
Robust stability of discrete-time state-delayed systems with saturation nonlinearities: linear matrix inequality approach
-
Kandanvli V.K.R., and Kar H. Robust stability of discrete-time state-delayed systems with saturation nonlinearities: linear matrix inequality approach. Signal Process. 89 (2009) 161-173
-
(2009)
Signal Process.
, vol.89
, pp. 161-173
-
-
Kandanvli, V.K.R.1
Kar, H.2
-
25
-
-
67649884220
-
Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities
-
Chen S.-F. Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities. Chaos Solitions Fractals 42 (2009) 1251-1257
-
(2009)
Chaos Solitions Fractals
, vol.42
, pp. 1251-1257
-
-
Chen, S.-F.1
-
26
-
-
0016473439
-
A discrete state-space model for linear image processing
-
Roesser R.P. A discrete state-space model for linear image processing. IEEE Trans.Automat. Control 20 (1975) 1-10
-
(1975)
IEEE Trans.Automat. Control
, vol.20
, pp. 1-10
-
-
Roesser, R.P.1
-
27
-
-
0003595806
-
-
SIAM, Philadelphia
-
Boyd S., El Ghaoui L., Feron E., and Balakrishnan V. Linear Matrix Inequalities in System and Control Theory (1994), SIAM, Philadelphia
-
(1994)
Linear Matrix Inequalities in System and Control Theory
-
-
Boyd, S.1
El Ghaoui, L.2
Feron, E.3
Balakrishnan, V.4
-
28
-
-
27744535823
-
2 filtering for systems with repeated scalar nonlinearities
-
2 filtering for systems with repeated scalar nonlinearities. IEEE Trans. Signal Process. 53 (2005) 4215-4226
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, pp. 4215-4226
-
-
Gao, H.1
Lames, J.2
Wang, C.3
-
29
-
-
0033100708
-
Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities
-
Chu Y.C., and Glover K. Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities. IEEE Trans. Automat. Control 44 (1999) 471-478
-
(1999)
IEEE Trans. Automat. Control
, vol.44
, pp. 471-478
-
-
Chu, Y.C.1
Glover, K.2
-
30
-
-
0003446303
-
-
The MathWorks Inc., Natick, MA
-
Gahinet P., Nemirovski A., Laub A.J., and Chilali M. LMI Control Toolbox For Use with MATLAB (1995), The MathWorks Inc., Natick, MA
-
(1995)
LMI Control Toolbox For Use with MATLAB
-
-
Gahinet, P.1
Nemirovski, A.2
Laub, A.J.3
Chilali, M.4
|