-
2
-
-
0141576907
-
-
Oxford University Press, Oxford, 10.1093/acprof:oso/9780198515906.001. 0001;
-
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks (Oxford University Press, Oxford, 2003) 10.1093/acprof:oso/9780198515906.001.0001
-
(2003)
Evolution of Networks
-
-
Dorogovtsev, S.N.1
Mendes, J.F.F.2
-
3
-
-
31344474880
-
-
10.1016/j.physrep.2005.10.009
-
S. Boccaletti, Phys. Rep. 424, 175 (2006). 10.1016/j.physrep.2005.10.009
-
(2006)
Phys. Rep.
, vol.424
, pp. 175
-
-
Boccaletti, S.1
-
4
-
-
44849122540
-
-
10.1038/nature06958
-
M. C. González, Nature (London) 453, 779 (2008). 10.1038/nature06958
-
(2008)
Nature (London)
, vol.453
, pp. 779
-
-
González, M.C.1
-
5
-
-
79051469126
-
-
10.1209/0295-5075/82/38002
-
A. Buscarino, EPL 82, 38002 (2008). 10.1209/0295-5075/82/38002
-
(2008)
EPL
, vol.82
, pp. 38002
-
-
Buscarino, A.1
-
6
-
-
41349102707
-
-
10.1103/PhysRevE.71.046119
-
P. Holme, Phys. Rev. E 71, 046119 (2005). 10.1103/PhysRevE.71.046119
-
(2005)
Phys. Rev. e
, vol.71
, pp. 046119
-
-
Holme, P.1
-
7
-
-
77953112790
-
-
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'08), August 24-27
-
G. Kossinets, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'08), August 24-27, 2008, Las Vegas, Nevada, USA (unpublished).
-
(2008)
-
-
Kossinets, G.1
-
8
-
-
0348107038
-
-
10.1016/j.physa.2003.10.007
-
B. Tadić and S. Thurner, Physica A 332, 566 (2004). 10.1016/j.physa.2003.10.007
-
(2004)
Physica A
, vol.332
, pp. 566
-
-
Tadić, B.1
Thurner, S.2
-
9
-
-
0034817838
-
-
10.1016/S0378-4371(01)00014-0
-
B. Tadić, Physica A 293, 273 (2001). 10.1016/S0378-4371(01)00014-0
-
(2001)
Physica A
, vol.293
, pp. 273
-
-
Tadić, B.1
-
12
-
-
44849116262
-
-
10.1103/PhysRevE.77.050905
-
M. Valencia, Phys. Rev. E 77, 050905 (R) (2008). 10.1103/PhysRevE.77. 050905
-
(2008)
Phys. Rev. e
, vol.77
, pp. 050905
-
-
Valencia, M.1
-
16
-
-
17044458532
-
-
10.1103/PhysRevE.68.066119
-
A. Raval, Phys. Rev. E 68, 066119 (2003). 10.1103/PhysRevE.68.066119
-
(2003)
Phys. Rev. e
, vol.68
, pp. 066119
-
-
Raval, A.1
-
17
-
-
77749328156
-
-
10.1103/PhysRevE.81.035101
-
J. Stehle, Phys. Rev. E 81, 035101 (R) (2010). 10.1103/PhysRevE.81.035101
-
(2010)
Phys. Rev. e
, vol.81
, pp. 035101
-
-
Stehle, J.1
-
19
-
-
35348957264
-
-
10.1103/PhysRevLett.87.198701
-
V. Latora and M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001). 10.1103/PhysRevLett.87.198701
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 198701
-
-
Latora, V.1
Marchiori, M.2
-
21
-
-
0037102646
-
-
10.1016/S0378-4371(02)00736-7
-
A.-L. Barabási, Physica A 311, 590 (2002). 10.1016/S0378-4371(02) 00736-7
-
(2002)
Physica A
, vol.311
, pp. 590
-
-
Barabási, A.-L.1
-
22
-
-
77953118463
-
-
in Proceedings of DIMACS Workshop on Computational Methods for Dynamic Interaction Network
-
A. Clauset and N. Eagle, in Proceedings of DIMACS Workshop on Computational Methods for Dynamic Interaction Network, 2007 (unpublished).
-
(2007)
-
-
Clauset, A.1
Eagle, N.2
-
23
-
-
18144395878
-
-
10.1006/jcss.2002.1829
-
D. Kempe, J. Comput. Syst. Sci. 64, 820 (2002). 10.1006/jcss.2002.1829
-
(2002)
J. Comput. Syst. Sci.
, vol.64
, pp. 820
-
-
Kempe, D.1
-
24
-
-
58149352263
-
-
10.1016/j.physa.2008.11.021
-
V. Kostakos, Physica A 388, 1007 (2009). 10.1016/j.physa.2008.11.021
-
(2009)
Physica A
, vol.388
, pp. 1007
-
-
Kostakos, V.1
-
25
-
-
41349102726
-
-
10.1103/PhysRevE.70.066117
-
J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004). 10.1103/PhysRevE.70.066117
-
(2004)
Phys. Rev. e
, vol.70
, pp. 066117
-
-
Park, J.1
Newman, M.E.J.2
-
26
-
-
65249124591
-
-
10.1103/PhysRevE.79.036114
-
G. Bianconi, Phys. Rev. E 79, 036114 (2009). 10.1103/PhysRevE.79.036114
-
(2009)
Phys. Rev. e
, vol.79
, pp. 036114
-
-
Bianconi, G.1
-
29
-
-
77953105228
-
-
In our discussion, we have implicitly assumed that the typical time, τm, to pass a message from a node to one of its first neighbors is of the same order as the typical time, τg, at which the graphs in the sequence are changing. We can simulate the case τm < τg by increasing the reach of a message (within a graph in the sequence) past its first neighbors. Note however that as the reach increases, the values of L will decrease while C does not change; therefore our main results still hold.
-
In our discussion, we have implicitly assumed that the typical time, τ m, to pass a message from a node to one of its first neighbors is of the same order as the typical time, τ g, at which the graphs in the sequence are changing. We can simulate the case τ m < τ g by increasing the reach of a message (within a graph in the sequence) past its first neighbors. Note however that as the reach increases, the values of L will decrease while C does not change; therefore our main results still hold.
-
-
-
|