-
1
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high dimensional data for data mining applications.”, In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIDMOD’98), pp. 94-105, 1998.
-
(1998)
Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIDMOD’98)
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
2
-
-
0031197006
-
A first application of independent component analysis to extracting structure from stocks returns
-
Back, A.D and Weigend, A. S., “A first application of independent component analysis to extracting structure from stocks returns”, International Journal of Neural System, 8, pp. 473-484, 1997.
-
(1997)
International Journal of Neural System
, vol.8
, pp. 473-484
-
-
Back, A.D.1
Weigend, A.S.2
-
3
-
-
15544384126
-
Clustering Time Series with Clipped Data
-
Anthony Bagnall and Gareth Janacek, “Clustering Time Series with Clipped Data”, Machine Learning, 58, pp. 151-178, 2005.
-
(2005)
Machine Learning
, vol.58
, pp. 151-178
-
-
Bagnall, A.1
Janacek, G.2
-
6
-
-
0028416938
-
Independent component analysis: A new concept?
-
P. Comon, “Independent component analysis: a new concept?” Signal Processing, 36, pp. 287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
8
-
-
84876903607
-
Classification rules + time = temporal rules
-
Amsterdan, Netherlands, April 21-24
-
P. Cotofrei and K. Stoffel, “Classification rules + time = temporal rules”, In proceedings of the 2002 Intl Conference on Computational Science, Amsterdan, Netherlands, April 21-24, pp. 572-581, 2002.
-
(2002)
Proceedings of the 2002 Intl Conference on Computational Science
, pp. 572-581
-
-
Cotofrei, P.1
Stoffel, K.2
-
9
-
-
77957873516
-
Rule discovery from time series
-
New York, NY, August 27-31. pp
-
G. Das, K. Lin, H. Mannila, G. Renganathan and P. Smyth, “Rule discovery from time series”, in proceedings of the 4th Int’l Conference on Knowledge Discovery and Data Mining, New York, NY, August 27-31. pp. 16-22, 1998.
-
(1998)
Proceedings of the 4Th Int’l Conference on Knowledge Discovery and Data Mining
, pp. 16-22
-
-
Das, G.1
Lin, K.2
Mannila, H.3
Renganathan, G.4
Smyth, P.5
-
10
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases
-
Portland, OR
-
M. Ester, H.P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases”, in Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’96), pp. 226-231, Portland, OR, August 1996.
-
(1996)
Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’96)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
12
-
-
1642281827
-
Pattern discovery from stock time series using self-organizing maps
-
San Francisco, CA, August 26-29
-
T.C. Fu, F.L. Chung, V. Ng and R. Luk, “Pattern discovery from stock time series using self-organizing maps”, Workshop Notes of KDD2001 Workshop on Temporal Data Mining, San Francisco, CA, August 26-29, pp. 27-37, 2001.
-
(2001)
Workshop Notes of KDD2001 Workshop on Temporal Data Mining
, pp. 27-37
-
-
Fu, T.C.1
Chung, F.L.2
Ng, V.3
Luk, R.4
-
13
-
-
0034593048
-
‘Mining the stock market: Which measure is best?'
-
Boston, MA, August 20-23
-
M. Gavrilov, D. Anguelov, P. Indyk and R. Motwani, “Mining the stock market: which measure is best?'', In proceedings of the 6th ACM Int’l Conference on Knowledge Discovery and Data Mining. Boston, MA, August 20-23, pp. 487-496, 2000.
-
(2000)
Proceedings of the 6Th ACM Int’l Conference on Knowledge Discovery and Data Mining
, pp. 487-496
-
-
Gavrilov, M.1
Anguelov, D.2
Indyk, P.3
Motwani, R.4
-
14
-
-
0032796478
-
On clustering fMRI time series
-
9, March
-
C. Goutte, P. Toft, E. Rostrup, F.A. Nielsen and L.K. Hansen, “On clustering fMRI time series'', NeuroImage, 9, March 1999, pp. 298-310(13).
-
(1999)
Neuroimage
, Issue.13
, pp. 298-310
-
-
Goutte, C.1
Toft, P.2
Rostrup, E.3
Nielsen, F.A.4
Hansen, L.K.5
-
15
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
Seattle, WA
-
S. Guha, R. Rastogi and K. Shim, “CURE: an efficient clustering algorithm for large databases”, In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pp. 73-84, Seattle, WA, June 1998.
-
(1998)
Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98)
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
16
-
-
84884622937
-
Discovering sequential association rules with constraints and time lags in multiple sequences
-
Lyon, France, June 27-29
-
S.K. Harms, J. Deogun and T. Tadesse, “Discovering sequential association rules with constraints and time lags in multiple sequences”, in proceedings of the 13th Intl Symposium on Methodologies for Intelligent Systems, Lyon, France, June 27-29. pp. 432-441, 2002.
-
(2002)
Proceedings of the 13Th Intl Symposium on Methodologies for Intelligent Systems
, pp. 432-441
-
-
Harms, S.K.1
Deogun, J.2
Tadesse, T.3
-
17
-
-
27144536001
-
‘Extensions to the k-means algorithm for clustering large data sets with categorical values'
-
Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values'', Data Mining and Knowledge Discovery, 2, pp. 283-304, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 283-304
-
-
Huang, Z.1
-
18
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis”, IEEE Transactions on Neural Networks 10, pp. 626-634, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 626-634
-
-
Hyvarinen, A.1
-
20
-
-
0346307721
-
‘A fast fixed-point algorithm for independent component analysis'
-
A. Hyvarinen and E. Oja, “A fast fixed-point algorithm for independent component analysis'', Neural Computation 9, pp. 1483-1492, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 1483-1492
-
-
Hyvarinen, A.1
Oja, E.2
-
21
-
-
84945255683
-
Distribution discovery: Local analysis of temporal rules
-
Taipei, Taiwan, May 6-8, pp
-
X. Jin, Y. Lu and C. Shi, “Distribution discovery: local analysis of temporal rules”, in proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, Taiwan, May 6-8, pp. 469-480, 2002.
-
(2002)
Proceedings of the 6Th Pacific-Asia Conference on Knowledge Discovery and Data Mining
, pp. 469-480
-
-
Jin, X.1
Lu, Y.2
Shi, C.3
-
22
-
-
84947900959
-
Indexing and mining of the local patterns in sequence database
-
Manchester, UK, August 12-14
-
X. Jin, L. Wang, Y. Lu and C. Shi, “Indexing and mining of the local patterns in sequence database”, in proceedings of the 3rd International Conference on Intelligent Data Engineering and Automated Learning, Manchester, UK, August 12-14, pp. 68-73, 2002.
-
(2002)
Proceedings of the 3Rd International Conference on Intelligent Data Engineering and Automated Learning
, pp. 68-73
-
-
Jin, X.1
Wang, L.2
Lu, Y.3
Shi, C.4
-
23
-
-
0026191274
-
‘Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture'
-
C. Jutten and J. Herault, “Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture'', Signal Processing 24, pp. 1-10, 1991.
-
(1991)
Signal Processing
, vol.24
, pp. 1-10
-
-
Jutten, C.1
Herault, J.2
-
24
-
-
0032343819
-
‘Discrimination and clustering for multivariate time series'
-
Y. Kakizawa, R.H. Shumway and M. Taniguchi, “Discrimination and clustering for multivariate time series'', Journal of the American Statistical Association, 93, pp. 328-340, March 1998.
-
(1998)
Journal of the American Statistical Association
, vol.93
, pp. 328-340
-
-
Kakizawa, Y.1
Shumway, R.H.2
Taniguchi, M.3
-
25
-
-
78149299418
-
‘Distance measures for effective clustering of ARIMA time-series'
-
San Jose, CA, November 29-December 2
-
K. Kalpakis, D. Gada and V. Puttagunta, “Distance measures for effective clustering of ARIMA time-series'', in Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM'01), San Jose, CA, November 29-December 2, 2001, pp. 273-280.
-
(2001)
Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM'01)
, pp. 273-280
-
-
Kalpakis, K.1
Gada, D.2
Puttagunta, V.3
-
27
-
-
8444253538
-
-
Riverside CA. University of California-Computer Science & Engineering Department
-
E. Keogh and T. Folias, “The UCR Time Series Data Mining Archive”, [http://www.cs.ucr.edu/eamonn/TSDMA/index.html]. Riverside CA. University of California-Computer Science & Engineering Department, 2002.
-
(2002)
The UCR Time Series Data Mining Archive
-
-
Keogh, E.1
Folias, T.2
-
28
-
-
0242709395
-
‘On the need for time series data mining benchmarks: A survey and empirical demonstration'
-
July 23-26, Edmonton, Alberta, Canada
-
E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: a survey and empirical demonstration'', in Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, Edmonton, Alberta, Canada, pp. 102-111, 2002.
-
(2002)
Proceedings of the 8Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 102-111
-
-
Keogh, E.1
Kasetty, S.2
-
29
-
-
0242686243
-
MALM: A framework for mining sequence database at multiple abstraction levels
-
Bethesda, MD, November 3-7, pp
-
C. Li, P.S. Yu and V. Castelli, “MALM: A framework for mining sequence database at multiple abstraction levels”, in proceedings of the 7th ACM CIKM Int'l Conference on Information and Knowledge Management, Bethesda, MD, November 3-7, pp. 267-272, 1998.
-
(1998)
Proceedings of the 7Th ACM CIKM Int'l Conference on Information and Knowledge Management
, pp. 267-272
-
-
Li, C.1
Yu, P.S.2
Castelli, V.3
-
30
-
-
3142702099
-
Time-series prediction using adaptive neuro-fuzzy networks
-
C.-J. Lin, “Time-series prediction using adaptive neuro-fuzzy networks”, Int. J. Sys. Sci., 35, pp. 273-286, 2004.
-
(2004)
Int. J. Sys. Sci.
, vol.35
, pp. 273-286
-
-
Lin, C.-J.1
-
31
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
J. MacQueen, “Some methods for classification and analysis of multivariate observations”. In Proc. 5th Berkeley Symp. Math. Statist, Prob., 1, pp. 281-297, 1967.
-
(1967)
Proc. 5Th Berkeley Symp. Math. Statist, Prob.
, vol.1
, pp. 281-297
-
-
Macqueen, J.1
-
32
-
-
0000119298
-
Hierarchical structure in financial markets
-
R.N. Mantegna, “Hierarchical structure in financial markets”, Euro. Phys. J, B11, pp. 193-197, 1999.
-
(1999)
Euro. Phys. J
, vol.B11
, pp. 193-197
-
-
Mantegna, R.N.1
-
33
-
-
27944492757
-
Modelling and asset allocation for financial markets based on a stochastic volatility microstructure model
-
H. Peng, Y. Tamura, W. Gui, T. Ozaki, “Modelling and asset allocation for financial markets based on a stochastic volatility microstructure model”, Inter. J. Sys. Sci., 36, pp. 315-327, 2005.
-
(2005)
Inter. J. Sys. Sci.
, vol.36
, pp. 315-327
-
-
Peng, H.1
Tamura, Y.2
Gui, W.3
Ozaki, T.4
-
34
-
-
12244279090
-
An alternate partitioning technique to quantify the regularity of complex time series
-
World Scientific Publishing
-
N. Radhakrishnan, J.D. Wilson and P.C. Loizou, “An alternate partitioning technique to quantify the regularity of complex time series”, Int. J. Bifurcation and Chaos, 10, World Scientific Publishing. pp. 1773-1779, 2000.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 1773-1779
-
-
Radhakrishnan, N.1
Wilson, J.D.2
Loizou, C.3
-
35
-
-
21844445654
-
-
Report Series for Adaptive Information Systems and Management in Economics and Management Science, July, Report #45
-
C. Schittenkopf, P. Tino and G. Dorffner, “The benefit of information reduction for trading strategies”, Report Series for Adaptive Information Systems and Management in Economics and Management Science, July, Report #45, 2000.
-
(2000)
The Benefit of Information Reduction for Trading Strategies
-
-
Schittenkopf, C.1
Tino, P.2
Dorffner, G.3
-
36
-
-
0034133653
-
WaveCluster: A wavelet-based clustering approach for spatial data in very large databases
-
G. Sheikholeslami, S. Chatterjee and A. Zhang, “WaveCluster: A wavelet-based clustering approach for spatial data in very large databases”, The VLDB Journal, 8, pp. 289-304, 2000.
-
(2000)
The VLDB Journal
, vol.8
, pp. 289-304
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
37
-
-
0004368572
-
Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams: Lessons learned from financial volatility trading
-
July, Report #46
-
P. Tino, C. Schittenkopf and G. Dorffner, “Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams: Lessons learned from financial volatility trading”, Report Series for Adaptive Information Systems and Management in Economics and Management Science, July, Report #46, 2000.
-
(2000)
Report Series for Adaptive Information Systems and Management in Economics and Management Science
-
-
Tino, P.1
Schittenkopf, C.2
Dorffner, G.3
-
38
-
-
84994158589
-
STING: A statistical information grid approach to spatial data mining
-
Athens, Greece
-
W. Wang, J. Yang and R. Muntz, “STING: A statistical information grid approach to spatial data mining”, in Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97), pages 186-195, Athens, Greece, August 1997.
-
(1997)
Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97)
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
39
-
-
85023682498
-
Yu, “Pattern Recognition of the term structure using independent component analysis”
-
Edmond H.C. Wu and Philip L.H. Yu, “Pattern Recognition of the term structure using independent component analysis”, International Journal of Pattern Recognition and Artificial Intelligence, 20, pp. 173-188, 2006.
-
(2006)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.20
, pp. 173-188
-
-
Edmond, H.C.W.1
Philip, L.H.2
-
40
-
-
85023659152
-
An independent component ordering and selection procedure based on the MSE criterion
-
Charleston, SC, USA
-
Edmond H.C. Wu and Philip L.H. Yu, “An independent component ordering and selection procedure based on the MSE criterion”, The 6th International Conference on Independent Component Analysis and Blind Source Separation (ICA2006), Charleston, SC, USA, 2006.
-
(2006)
The 6Th International Conference on Independent Component Analysis and Blind Source Separation (ICA2006)
-
-
Edmond, H.C.W.1
Philip, L.H.Y.2
|