메뉴 건너뛰기




Volumn 22, Issue 3, 2010, Pages 581-598

Feature selection in simple neurons: How coding depends on spiking dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ARTICLE; BIOLOGICAL MODEL; CELL MEMBRANE POTENTIAL; COMPUTER SIMULATION; HUMAN; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY; STATISTICAL MODEL; STATISTICS; TIME;

EID: 77953017373     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.02-09-956     Document Type: Article
Times cited : (24)

References (46)
  • 1
    • 0020049262 scopus 로고
    • Role of the cortical neuron: Integrator or coincidence detector?
    • Abeles, M. (1982). Role of the cortical neuron: Integrator or coincidence detector? Israel J. Med. Sci., 18, 83-92.
    • (1982) Israel J. Med. Sci. , vol.18 , pp. 83-92
    • Abeles, M.1
  • 3
    • 0043180466 scopus 로고    scopus 로고
    • Computation in a single neuron: Hodgkin and Huxley revisited
    • Aguera y Arcas, B., Fairhall, A. L., & Bialek, W. (2003). Computation in a single neuron: Hodgkin and Huxley revisited. Neural Comput., 15, 1715-1749.
    • (2003) Neural Comput , vol.15 , pp. 1715-1749
    • Aguera y Arcas, B.1    Fairhall, A.L.2    Bialek, W.3
  • 4
    • 48349147782 scopus 로고    scopus 로고
    • Spike-triggered averages for passive and resonant neurons receiving filtered excitatory and inhibitory synaptic drive
    • Badel, L., Gerstner, W., & Richardson, M. J. (2008). Spike-triggered averages for passive and resonant neurons receiving filtered excitatory and inhibitory synaptic drive. Phys. Rev. E, 78, 011914.
    • (2008) Phys. Rev. E , vol.78 , pp. 011914
    • Badel, L.1    Gerstner, W.2    Richardson, M.J.3
  • 5
    • 56449129046 scopus 로고    scopus 로고
    • Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves
    • Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., & Richardson, M. (2008). Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves. Biological Cybernetics, 99(4-5), 361-370.
    • (2008) Biological Cybernetics , vol.99 , Issue.4-5 , pp. 361-370
    • Badel, L.1    Lefort, S.2    Berger, T.3    Petersen, C.4    Gerstner, W.5    Richardson, M.6
  • 6
    • 17844362981 scopus 로고    scopus 로고
    • Adaptation without parameter change: Dynamic gain control in motion detection
    • Borst, A., Flanagin, V. L., & Sompolinsky, H. (2005). Adaptation without parameter change: Dynamic gain control in motion detection. PNAS, 102(17), 6172-6176.
    • (2005) PNAS , vol.102 , Issue.17 , pp. 6172-6176
    • Borst, A.1    Flanagin, V.L.2    Sompolinsky, H.3
  • 7
    • 0041360352 scopus 로고    scopus 로고
    • Firing rate of the noisy quadratic integrate-and-fire neuron
    • Brunel,N.,&Latham, P. E. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput., 15, 2281-2306.
    • (2003) Neural Comput , vol.15 , pp. 2281-2306
    • Brunel, N.1    Latham, P.E.2
  • 8
    • 0017082266 scopus 로고
    • Spike initiation by transmembrane current: A white noise analysis
    • Bryant,H.,&Segundo, J. (1976). Spike initiation by transmembrane current: A white noise analysis. J. Physiol., 260, 279-314.
    • (1976) J. Physiol. , vol.260 , pp. 279-314
    • Bryant, H.1    Segundo, J.2
  • 11
    • 0023740277 scopus 로고
    • Real-time performance of a movement sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences
    • de Ruyter van Steveninck, R., & Bialek,W. (1988). Real-time performance of a movement sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences. Proc. R. Soc. London Ser. B, 234, 379-414.
    • (1988) Proc. R. Soc. London Ser. B , vol.234 , pp. 379-414
    • de Ruyter van Steveninck, R.1    Bialek, W.2
  • 12
    • 0033053130 scopus 로고    scopus 로고
    • Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo
    • Destexhe, A., & Pare, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81, 1531-1547.
    • (1999) J. Neurophysiol. , vol.81 , pp. 1531-1547
    • Destexhe, A.1    Pare, D.2
  • 13
    • 0022693272 scopus 로고
    • Parabolic bursting in an excitable system coupled with slow oscillation
    • Ermentrout, G. B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with slow oscillation. SIAM J. Appl. Math., 46, 233-253.
    • (1986) SIAM J. Appl. Math. , vol.46 , pp. 233-253
    • Ermentrout, G.B.1    Kopell, N.2
  • 14
    • 0142141489 scopus 로고    scopus 로고
    • Synaptic background noise controls the input/output characteristics of single cells in an in vitromodel of in vivo activity
    • Fellous, J., Rudolph, M., Destexhe, A., & Sejnowski, T. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitromodel of in vivo activity. Neuroscience, 122, 811-829.
    • (2003) Neuroscience , vol.122 , pp. 811-829
    • Fellous, J.1    Rudolph, M.2    Destexhe, A.3    Sejnowski, T.4
  • 15
    • 0347694858 scopus 로고    scopus 로고
    • How spike generation mechanisms determine the neuronal response to fluctuating inputs
    • Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci., 23(37), 11628-11640.
    • (2003) J. Neurosci. , vol.23 , Issue.37 , pp. 11628-11640
    • Fourcaud-Trocmé, N.1    Hansel, D.2    van Vreeswijk, C.3    Brunel, N.4
  • 16
    • 34548817302 scopus 로고    scopus 로고
    • Contrast adaptation in a nonadapting LGN model
    • Gaudry, K. S., & Reinagel, P. (2007). Contrast adaptation in a nonadapting LGN model. J. Neurophysiol., 98, 1287-1296.
    • (2007) J. Neurophysiol. , vol.98 , pp. 1287-1296
    • Gaudry, K.S.1    Reinagel, P.2
  • 18
    • 33745824228 scopus 로고    scopus 로고
    • Sound representation methods for spectro-temporal receptive field estimation
    • Gill, P., Zhang, J.,Woolley, S., Fremouw, T., & Theunissen, F. (2008). Sound representation methods for spectro-temporal receptive field estimation. J. Comp. Neurosci., 21(1), 5-20.
    • (2008) J. Comp. Neurosci. , vol.21 , Issue.1 , pp. 5-20
    • Gill, P.1    Zhang, J.2    Woolley, S.3    Fremouw, T.4    Theunissen, F.5
  • 19
    • 34848916358 scopus 로고    scopus 로고
    • State changes rapidly modulate cortical neuronal responsiveness
    • Hasenstaub, A., Sachdev, R., & McCormick, D. (2007). State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci., 27, 9607-9622.
    • (2007) J. Neurosci. , vol.27 , pp. 9607-9622
    • Hasenstaub, A.1    Sachdev, R.2    McCormick, D.3
  • 20
    • 36849093520 scopus 로고    scopus 로고
    • Single neuron computation: From dynamical system to feature detector
    • Hong, S., Aguera y Arcas, B., & Fairhall, A. L. (2007). Single neuron computation: From dynamical system to feature detector. Neural Comput., 19, 3133-3172.
    • (2007) Neural Comput , vol.19 , pp. 3133-3172
    • Hong, S.1    Aguera y Arcas, B.2    Fairhall, A.L.3
  • 21
    • 0022960073 scopus 로고
    • The identification of nonlinear biological systems: Wiener and Hammerstein cascade models
    • Hunter, I.,&Korenberg,M. (1986). The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics, 55, 135-144.
    • (1986) Biological Cybernetics , vol.55 , pp. 135-144
    • Hunter, I.1    Korenberg, M.2
  • 23
    • 0034767817 scopus 로고    scopus 로고
    • Resonate-and-fire neurons
    • Izhikevich, E. (2001). Resonate-and-fire neurons. Neural Networks, 14, 883-894.
    • (2001) Neural Networks , vol.14 , pp. 883-894
    • Izhikevich, E.1
  • 24
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063-1070.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.1
  • 25
    • 0043009735 scopus 로고    scopus 로고
    • Analytic expressions for rate and CV of a type I neuron driven by gaussian white noise
    • Lindner, B., Longtin, A., & Bulsara, A. (2003). Analytic expressions for rate and CV of a type I neuron driven by gaussian white noise. Neural Comput., 15, 1761-1788.
    • (2003) Neural Comput , vol.15 , pp. 1761-1788
    • Lindner, B.1    Longtin, A.2    Bulsara, A.3
  • 26
    • 0033103165 scopus 로고    scopus 로고
    • The neural code of the retina
    • Meister,M., & Berry II, M. (1999). The neural code of the retina. Neuron, 22, 435-450.
    • (1999) Neuron , vol.22 , pp. 435-450
    • Meister, M.1    Berry, II.M.2
  • 27
    • 33745863997 scopus 로고    scopus 로고
    • The most likely voltage path and large deviation approximations for integrate-and-fire neurons
    • Paninski, L. (2006a).The most likely voltage path and large deviation approximations for integrate-and-fire neurons. J. Comp. Neurosci., 21, 71-87.
    • (2006) J. Comp. Neurosci. , vol.21 , pp. 71-87
    • Paninski, L.1
  • 28
    • 33750583238 scopus 로고    scopus 로고
    • The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise
    • Paninski, L. (2006b). The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise. Neural Comput., 18, 2592-2616.
    • (2006) Neural Comput , vol.18 , pp. 2592-2616
    • Paninski, L.1
  • 29
    • 0038118574 scopus 로고    scopus 로고
    • Noise-driven adaptation: In vitro and mathematical analysis
    • Paninski, L., Lau, B., & Reyes, A. (2003). Noise-driven adaptation: In vitro and mathematical analysis. Neurocomputing, 52-54, 877-883.
    • (2003) Neurocomputing , vol.52-54 , pp. 877-883
    • Paninski, L.1    Lau, B.2    Reyes, A.3
  • 30
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
    • Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput., 16, 2533-2561.
    • (2004) Neural Comput , vol.16 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 31
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-firemodels estimated using intracellular and extracellular data
    • Paninski, L., Pillow, J., & Simoncelli, E. (2005). Comparing integrate-and-firemodels estimated using intracellular and extracellular data. Neurocomputing, 65-66, 379-385.
    • (2005) Neurocomputing , vol.65-66 , pp. 379-385
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 32
    • 77953348946 scopus 로고    scopus 로고
    • Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones
    • Powers, R., Dai, Y., Bell, B., Percival, D., & Binder, M. (2005). Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones. J. Physiol., 528, 131-150.
    • (2005) J. Physiol. , vol.528 , pp. 131-150
    • Powers, R.1    Dai, Y.2    Bell, B.3    Percival, D.4    Binder, M.5
  • 33
    • 33748532862 scopus 로고    scopus 로고
    • Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons
    • Prescott, S. A., Ratte, S., De Koninck, Y., & Sejnowski, T. J. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J. Neurosci., 26(36), 9084-9097.
    • (2006) J. Neurosci. , vol.26 , Issue.36 , pp. 9084-9097
    • Prescott, S.A.1    Ratte, S.2    De Koninck, Y.3    Sejnowski, T.J.4
  • 34
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents
    • Rauch, A., Camera, G. L., Luscher, H., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J. Neurophysiol., 90(3), 1598-1612.
    • (2003) J. Neurophysiol. , vol.90 , Issue.3 , pp. 1598-1612
    • Rauch, A.1    Camera, G.L.2    Luscher, H.3    Senn, W.4    Fusi, S.5
  • 37
    • 0026533782 scopus 로고
    • White-noise analysis in neurophysiology
    • Sakai, H. (1992).White-noise analysis in neurophysiology. Physiol. Rev., 72, 491-505.
    • (1992) Physiol. Rev. , vol.72 , pp. 491-505
    • Sakai, H.1
  • 39
    • 27344433674 scopus 로고    scopus 로고
    • Two-dimensional time coding in the auditory brainstem
    • Slee, S., Higgs, M., Fairhall, A., & Spain,W. (2005). Two-dimensional time coding in the auditory brainstem. J. Neurosci., 26, 9978-9988.
    • (2005) J. Neurosci. , vol.26 , pp. 9978-9988
    • Slee, S.1    Higgs, M.2    Fairhall, A.3    Spain, W.4
  • 40
    • 31944447823 scopus 로고    scopus 로고
    • Linearization in analysis of nonlinear stochastic systems: Recent results-part I: Theory
    • Socha, L. (2005). Linearization in analysis of nonlinear stochastic systems: Recent results-part I: Theory. Applied Mechanics Reviews, 58(3), 178-205.
    • (2005) Applied Mechanics Reviews , vol.58 , Issue.3 , pp. 178-205
    • Socha, L.1
  • 41
    • 0348197962 scopus 로고    scopus 로고
    • Subthreshold outward currents enhance temporal integration in auditory neurons
    • Svirskis, G., Dodla, R., & Rinzel, J. (2003). Subthreshold outward currents enhance temporal integration in auditory neurons. Biol. Cybern., 89, 330-340.
    • (2003) Biol. Cybern. , vol.89 , pp. 330-340
    • Svirskis, G.1    Dodla, R.2    Rinzel, J.3
  • 42
    • 2442592638 scopus 로고    scopus 로고
    • Sodium along with low threshold potassium currents enhance coincidence detection of subthreshold noisy signals in mso neurons
    • Svirskis,G., Kotak,V., Sanes,D.,&Rinzel, J. (2004). Sodium along with low threshold potassium currents enhance coincidence detection of subthreshold noisy signals in mso neurons. J. Neurophysiol., 91, 2465-2473.
    • (2004) J. Neurophysiol. , vol.91 , pp. 2465-2473
    • Svirskis, G.1    Kotak, V.2    Sanes, D.3    Rinzel, J.4
  • 43
    • 0034653816 scopus 로고    scopus 로고
    • Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds
    • Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci., 20(6), 2315-2331.
    • (2000) J. Neurosci. , vol.20 , Issue.6 , pp. 2315-2331
    • Theunissen, F.E.1    Sen, K.2    Doupe, A.J.3
  • 45
    • 57749113013 scopus 로고    scopus 로고
    • 061908
    • Wilson,M. T., & Steyn-Ross, D. A. (2008). Subthreshold dynamics of a single neuron from a Hamilonian perspective. Phys. Rev. E, 78, 061908.
    • (2008) Phys. Rev. E , vol.78
    • Wilson, M.T.1    Steyn-Ross, D.A.2
  • 46
    • 85035209607 scopus 로고    scopus 로고
    • Dynamical mechanisms underlying contrast gain control in single neurons
    • Yu, Y., & Lee, T. S. (2003). Dynamical mechanisms underlying contrast gain control in single neurons. Phys. Rev. E, 68(1), 011901.
    • (2003) Phys. Rev. E , vol.68 , Issue.1 , pp. 011901
    • Yu, Y.1    Lee, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.