메뉴 건너뛰기




Volumn 18, Issue 6, 2010, Pages 957-966

Bandwidth adaptive hardware architecture of K-means clustering for video analysis

Author keywords

Clustering methods; Hardware design; K Means; Parallel architectures; Pattern recognition

Indexed keywords

CLOCK SPEED; CLUSTERING METHODS; COST CONSTRAINTS; FEATURE VECTORS; GATE COUNT; HARDWARE ARCHITECTURE; HARDWARE DESIGN; HARDWARE IMPLEMENTATIONS; K-MEANS; K-MEANS ALGORITHM; K-MEANS CLUSTERING; MULTI-MEDIA ANALYSIS; PARALLEL MODE; PATTERN CLASSIFICATION; REAL TIME REQUIREMENT; SYSTEM BUS; VIDEO ANALYSIS;

EID: 77952950508     PISSN: 10638210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVLSI.2009.2017543     Document Type: Article
Times cited : (43)

References (23)
  • 1
  • 2
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Stat. Probab., 1967, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. Probab. , pp. 281-297
    • MacQueen, J.1
  • 3
    • 24344484344 scopus 로고    scopus 로고
    • General C-means clustering model
    • J. Yu, "General C-means clustering model," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8, pp. 1197-1211, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1197-1211
    • Yu, J.1
  • 5
    • 0035336869 scopus 로고    scopus 로고
    • Stochastic K-Means algorithm for vector quantization
    • B. Kövesi, J.-M. Boucher, and S. Saoudib, "Stochastic K-Means algorithm for vector quantization," Pattern Recog. Lett., vol.22, no.6, pp. 603-610, 2001.
    • (2001) Pattern Recog. Lett. , vol.22 , Issue.6 , pp. 603-610
    • Kövesi, B.1    Boucher, J.-M.2    Saoudib, S.3
  • 8
    • 46449115936 scopus 로고    scopus 로고
    • Robust video object segmentation based on K-Means background clustering and watershed in ill-conditioned surveillance systems
    • Jul.
    • T.-W. Chen, S.-C. Hsu, and S.-Y. Chien, "Robust video object segmentation based on K-Means background clustering and watershed in ill-conditioned surveillance systems," in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2007, pp. 787-790.
    • (2007) Proc. IEEE Int. Conf. Multimedia Expo , pp. 787-790
    • Chen, T.-W.1    Hsu, S.-C.2    Chien, S.-Y.3
  • 9
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-Means algorithm
    • J. M. Peña, J. A. Lozano, and P. Larrañaga, "An empirical comparison of four initialization methods for the K-Means algorithm," Pattern Recog. Lett., vol.20, no.10, pp. 1027-1040, 1999.
    • (1999) Pattern Recog. Lett. , vol.20 , Issue.10 , pp. 1027-1040
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 12
    • 0036399517 scopus 로고    scopus 로고
    • Reducing the computation time of the Isodata and K-Means unsupervised classification algorithms
    • S. Phillips, "Reducing the computation time of the Isodata and K-Means unsupervised classification algorithms," in Proc. IEEE Int. Geosci. Remote Sensing Symp., 2002, pp. 1627-1629.
    • (2002) Proc. IEEE Int. Geosci. Remote Sensing Symp. , pp. 1627-1629
    • Phillips, S.1
  • 15
    • 33749064644 scopus 로고    scopus 로고
    • Recognition, mining and synthesis moves computers to the era of Tera
    • Feb.
    • P. Dubey, "Recognition, mining and synthesis moves computers to the era of Tera," Technology@Intel Mag., Feb. 2005.
    • (2005) Technology@Intel Mag.
    • Dubey, P.1
  • 16
    • 33750592339 scopus 로고    scopus 로고
    • An efficient digital VLSI implementation of Gaussian mixture models-based classifier
    • Sep.
    • M. Shi and A. Bermak, "An efficient digital VLSI implementation of Gaussian mixture models-based classifier," IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol.14, no.9, pp. 962-974, Sep. 2006.
    • (2006) IEEE Trans. Very Large Scale Integr.(VLSI) Syst. , vol.14 , Issue.9 , pp. 962-974
    • Shi, M.1    Bermak, A.2
  • 18
    • 12344337249 scopus 로고    scopus 로고
    • Hardware-driven adaptive K-Means clustering for real-time video imaging
    • Jan.
    • B. Maliatski and O. Yadid-Pecht, "Hardware-driven adaptive K-Means clustering for real-time video imaging," IEEE Trans. Circuits Syst. for Video Technol., vol.15, no.1, pp. 164-166, Jan. 2005.
    • (2005) IEEE Trans. Circuits Syst. for Video Technol. , vol.15 , Issue.1 , pp. 164-166
    • Maliatski, B.1    Yadid-Pecht, O.2
  • 20
    • 34047242620 scopus 로고    scopus 로고
    • Real-time K-Means clustering for color images on reconfigurable hardware
    • T. Maruyama, "Real-time K-Means clustering for color images on reconfigurable hardware," in Proc. Int. Conf. Pattern Recog., 2006, pp. 816-819.
    • (2006) Proc. Int. Conf. Pattern Recog. , pp. 816-819
    • Maruyama, T.1
  • 21
    • 36948998616 scopus 로고    scopus 로고
    • An FPGA implementation of real-time K-Means clustering for color images
    • Nov.
    • T. Saegusa and T. Maruyama, "An FPGA implementation of real-time K-Means clustering for color images," J. Real-Time Image Process., vol.2, no.4, pp. 309-318, Nov. 2007.
    • (2007) J. Real-Time Image Process. , vol.2 , Issue.4 , pp. 309-318
    • Saegusa, T.1    Maruyama, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.