메뉴 건너뛰기




Volumn 179, Issue 1-3, 2010, Pages 715-720

QSPR prediction of flash point of esters by means of GFA and ANFIS

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Ester; Flash point; Genetic function approximation (GFA); QSPR

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS); DESCRIPTORS; FLASH POINTS; FUNCTION APPROXIMATION; MOLECULAR DESCRIPTORS; NONLINEAR BEHAVIOR; QSPR MODEL; QUANTITATIVE STRUCTURE PROPERTY RELATIONSHIPS; SQUARED CORRELATION COEFFICIENTS;

EID: 77952890181     PISSN: 03043894     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2010.03.060     Document Type: Article
Times cited : (56)

References (32)
  • 1
    • 33847103246 scopus 로고    scopus 로고
    • A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures
    • Liaw H.J., Wang T.A. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures. J. Hazard. Mater. 2007, 141:193-201.
    • (2007) J. Hazard. Mater. , vol.141 , pp. 193-201
    • Liaw, H.J.1    Wang, T.A.2
  • 2
    • 52249095518 scopus 로고    scopus 로고
    • Flash-point prediction for binary partially miscible aqueous-organic mixtures
    • Liaw H.J., Chen C.T., Gerbaud V. Flash-point prediction for binary partially miscible aqueous-organic mixtures. Chem. Eng. Sci. 2008, 63:4543-4554.
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 4543-4554
    • Liaw, H.J.1    Chen, C.T.2    Gerbaud, V.3
  • 3
    • 0041834758 scopus 로고    scopus 로고
    • Determination of flash point in air and pure oxygen using an equilibrium closed bomb apparatus
    • Kong D., Ende D.J., Brenek S.J., Weston N.P. Determination of flash point in air and pure oxygen using an equilibrium closed bomb apparatus. J. Hazard. Mater. 2003, 102:155-165.
    • (2003) J. Hazard. Mater. , vol.102 , pp. 155-165
    • Kong, D.1    Ende, D.J.2    Brenek, S.J.3    Weston, N.P.4
  • 4
    • 0036579061 scopus 로고    scopus 로고
    • A reappraisal of the flash point of formic acid
    • Jones J.C., Godefroy J. A reappraisal of the flash point of formic acid. J. Loss Prev. Process Ind. 2002, 15:245-247.
    • (2002) J. Loss Prev. Process Ind. , vol.15 , pp. 245-247
    • Jones, J.C.1    Godefroy, J.2
  • 5
    • 54049139304 scopus 로고    scopus 로고
    • A new neural network-group contribution method for estimation of flash point temperature of pure components
    • Gharagheizi F., Alamdari R.F., Angaji M.T. A new neural network-group contribution method for estimation of flash point temperature of pure components. Energy Fuels 2008, 22:1628-1635.
    • (2008) Energy Fuels , vol.22 , pp. 1628-1635
    • Gharagheizi, F.1    Alamdari, R.F.2    Angaji, M.T.3
  • 8
    • 34447637403 scopus 로고    scopus 로고
    • Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network
    • Pan Y., Jiang J., Wang Z. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. J. Hazard. Mater. 2007, 147:424-430.
    • (2007) J. Hazard. Mater. , vol.147 , pp. 424-430
    • Pan, Y.1    Jiang, J.2    Wang, Z.3
  • 9
    • 68549132527 scopus 로고    scopus 로고
    • QSPR flash point prediction of solvents using topological indices for application in computer aided molecular design
    • Patel S.J., Ng D., Mannan M.S. QSPR flash point prediction of solvents using topological indices for application in computer aided molecular design. Ind. Eng. Chem. Res. 2009, 48:7378-7387.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 7378-7387
    • Patel, S.J.1    Ng, D.2    Mannan, M.S.3
  • 10
    • 34248586635 scopus 로고    scopus 로고
    • 3D-QSPR modeling and prediction of nonlinear optical responses of organic chromophores
    • Xu J., Chen B., Xu W., Zhao S., Yi Ch., Cui W. 3D-QSPR modeling and prediction of nonlinear optical responses of organic chromophores. Chemometr. Intell. Lab. Syst. 2007, 87:275-280.
    • (2007) Chemometr. Intell. Lab. Syst. , vol.87 , pp. 275-280
    • Xu, J.1    Chen, B.2    Xu, W.3    Zhao, S.4    Yi, C.5    Cui, W.6
  • 11
    • 38549170542 scopus 로고    scopus 로고
    • Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression
    • Chen H.F. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Anal. Chim. Acta 2008, 609:24-36.
    • (2008) Anal. Chim. Acta , vol.609 , pp. 24-36
    • Chen, H.F.1
  • 12
    • 47149094630 scopus 로고    scopus 로고
    • Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers
    • Li L., Xie S., Cai H., Bai X., Xue Z. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers. Chemosphere 2008, 72:1602-1606.
    • (2008) Chemosphere , vol.72 , pp. 1602-1606
    • Li, L.1    Xie, S.2    Cai, H.3    Bai, X.4    Xue, Z.5
  • 13
    • 67349117399 scopus 로고    scopus 로고
    • Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices
    • Wang R., Jiang J., Pan Y., Cao H., Cui Y. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices. J. Hazard. Mater. 2009, 166:155-186.
    • (2009) J. Hazard. Mater. , vol.166 , pp. 155-186
    • Wang, R.1    Jiang, J.2    Pan, Y.3    Cao, H.4    Cui, Y.5
  • 14
    • 33846096494 scopus 로고    scopus 로고
    • QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach
    • Modarresi H., Modarress H., Dearden J.C. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 2007, 66:2067-2076.
    • (2007) Chemosphere , vol.66 , pp. 2067-2076
    • Modarresi, H.1    Modarress, H.2    Dearden, J.C.3
  • 16
    • 38749114675 scopus 로고    scopus 로고
    • Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines
    • Niazi A., Jameh-Bozorghi S., Nori-Shargh D. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines. J. Hazard. Mater. 2008, 151:603-609.
    • (2008) J. Hazard. Mater. , vol.151 , pp. 603-609
    • Niazi, A.1    Jameh-Bozorghi, S.2    Nori-Shargh, D.3
  • 17
    • 2442571794 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy controller for SRM
    • Akcayol M.A. Application of adaptive neuro-fuzzy controller for SRM. Adv. Eng. Softw. 2004, 35:129-137.
    • (2004) Adv. Eng. Softw. , vol.35 , pp. 129-137
    • Akcayol, M.A.1
  • 18
    • 58349088285 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
    • Khajeh A., Modarress H., Rezaee B. Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expet. Syst. Appl. 2009, 36:5728-5732.
    • (2009) Expet. Syst. Appl. , vol.36 , pp. 5728-5732
    • Khajeh, A.1    Modarress, H.2    Rezaee, B.3
  • 19
    • 71549124961 scopus 로고    scopus 로고
    • Prediction of solubility of gases in polystyrene by adaptive neuro-fuzzy inference system and radial basis function neural network
    • Khajeh A., Modarress H. Prediction of solubility of gases in polystyrene by adaptive neuro-fuzzy inference system and radial basis function neural network. Expet. Syst. Appl. 2010, 37:3070-3074.
    • (2010) Expet. Syst. Appl. , vol.37 , pp. 3070-3074
    • Khajeh, A.1    Modarress, H.2
  • 21
    • 77952891317 scopus 로고    scopus 로고
    • http://www.michem.disat.unimib.it/chm/.
  • 22
    • 0028467707 scopus 로고
    • Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships
    • Rogers D., Hopfinger A.J. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 1994, 34:854-866.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 23
    • 0016451032 scopus 로고
    • An experiment in linquistic synthesis with a fuzzy logic controller
    • Mamdani E.H., Assilian S. An experiment in linquistic synthesis with a fuzzy logic controller. Internat. J. Man-Mach. Stud. 1975, 7:1-13.
    • (1975) Internat. J. Man-Mach. Stud. , vol.7 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 25
    • 0027601884 scopus 로고
    • ANFIS: adaptive network-based fuzzy inference systems
    • Jang J. ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 1993, 23(3):665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.1
  • 26
    • 77952889238 scopus 로고    scopus 로고
    • http://accelrys.com/.
  • 28
    • 0028482884 scopus 로고
    • Approximate clustering via the mountain method
    • Yager R., Filev D. Approximate clustering via the mountain method. IEEE Trans. Syst. Man Cybern. 1994, 24(8):1279-1284.
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , Issue.8 , pp. 1279-1284
    • Yager, R.1    Filev, D.2
  • 29
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2(3):267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 30
    • 0035899180 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies
    • Loukas Y.L. Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies. J. Med. Chem. 2001, 44:2772-2783.
    • (2001) J. Med. Chem. , vol.44 , pp. 2772-2783
    • Loukas, Y.L.1
  • 31
    • 0002678008 scopus 로고    scopus 로고
    • Quantitative structure-property relationships for the estimation of boiling point and flash point using a radial basis function neural network
    • Tetteh J., Suzuki T., Metcalfe E., Howells S. Quantitative structure-property relationships for the estimation of boiling point and flash point using a radial basis function neural network. J. Chem. Inf. Comput. Sci. 1999, 39:491-507.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 491-507
    • Tetteh, J.1    Suzuki, T.2    Metcalfe, E.3    Howells, S.4
  • 32
    • 53849139612 scopus 로고    scopus 로고
    • Prediction of flash point temperature of pure components using a quantitative structure-property relationship model
    • Gharagheizi F., Alamdari R.F. Prediction of flash point temperature of pure components using a quantitative structure-property relationship model. QSAR Comb. Sci. 2008, 27:679-683.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 679-683
    • Gharagheizi, F.1    Alamdari, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.