-
1
-
-
77649223767
-
Combinatorial cardinal characteristics of the continuum
-
In: Foreman, M., Magidor, M., Kanamori, A. (eds.), Available at
-
Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Magidor, M., Kanamori, A. (eds.) Handbook of Set Theory, Available at http://www.math.lsa.umich.edu/~ablass/set.html.
-
Handbook of Set Theory
-
-
Blass, A.1
-
2
-
-
58449108287
-
Model theory for metric structures
-
In: Chatzidakis, Z. et al. (eds.), Lecture Notes series of the London Math. Society, no. 350. Cambridge University Press
-
Ben Yaacov, I., Berenstein, A., Henson, C. W., Usvyatsov, A.: Model theory for metric structures. In: Chatzidakis, Z. et al. (eds.) Model Theory with Applications to Algebra and Analysis, vol. II. Lecture Notes series of the London Math. Society, no. 350. Cambridge University Press, pp. 315-427 (2008).
-
(2008)
Model Theory with Applications to Algebra and Analysis
, vol.II
, pp. 315-427
-
-
Ben Yaacov, I.1
Berenstein, A.2
Henson, C.W.3
Usvyatsov, A.4
-
3
-
-
0001523467
-
Outer conjugacy classes of automorphisms of factors
-
Connes A.: Outer conjugacy classes of automorphisms of factors. Ann. Sci. Éc. Norm. Sup. Sér. 4(8), 383-420 (1975).
-
(1975)
Ann. Sci. Éc. Norm. Sup. Sér.
, vol.4
, Issue.8
, pp. 383-420
-
-
Connes, A.1
-
6
-
-
0040745676
-
Semiselective coideals
-
Farah I.: Semiselective coideals. Mathematika 45, 79-103 (1998).
-
(1998)
Mathematika
, vol.45
, pp. 79-103
-
-
Farah, I.1
-
7
-
-
64549139317
-
The relative commutant of separable C*-algebras of real rank zero
-
Farah I.: The relative commutant of separable C*-algebras of real rank zero. J. Funct. Anal. 256, 3841-3846 (2009).
-
(2009)
J. Funct. Anal.
, vol.256
, pp. 3841-3846
-
-
Farah, I.1
-
11
-
-
34250217476
-
Ultraproducts of C*-algebras. Recent advances in operator theory and related topics (Szeged, 1999)
-
Birkhäuser, Basel
-
Ge, L., Hadwin, D.: Ultraproducts of C*-algebras. Recent advances in operator theory and related topics (Szeged, 1999), Oper. Theory Adv. Appl. vol. 127. Birkhäuser, Basel, pp. 305-326 (2001).
-
(2001)
Oper. Theory Adv. Appl.
, vol.127
, pp. 305-326
-
-
Ge, L.1
Hadwin, D.2
-
12
-
-
2442674101
-
Finite group actions on C*-algebras with the Rohlin property
-
Izumi M.: Finite group actions on C*-algebras with the Rohlin property. I. Duke Math. J. 122, 233-280 (2004).
-
(2004)
I. Duke Math. J.
, vol.122
, pp. 233-280
-
-
Izumi, M.1
-
15
-
-
63849331824
-
Central sequences in C*-algebras and strongly purely infinite algebras
-
Springer, Berlin
-
Kirchberg, E.: Central sequences in C*-algebras and strongly purely infinite algebras. Operator algebras: the Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, pp. 175-231 (2006).
-
(2006)
Operator algebras: The Abel Symposium 2004, Abel Symp.
, vol.1
, pp. 175-231
-
-
Kirchberg, E.1
-
20
-
-
84963043585
-
Central sequences and the hyperfinite factor
-
McDuff D.: Central sequences and the hyperfinite factor. Proc. Lond. Math. Soc. 21, 443-461 (1970).
-
(1970)
Proc. Lond. Math. Soc.
, vol.21
, pp. 443-461
-
-
McDuff, D.1
-
22
-
-
0002924111
-
A classification theorem for nuclear purely infinite simple C*-algebras
-
(electronic)
-
Phillips N. C.: A classification theorem for nuclear purely infinite simple C*-algebras. Documenta Math. 5, 49-114 (2000) (electronic).
-
(2000)
Documenta Math.
, vol.5
, pp. 49-114
-
-
Phillips, N.C.1
-
23
-
-
34548118680
-
The Calkin algebra has outer automorphisms
-
Phillips N. C., Weaver N. C.: The Calkin algebra has outer automorphisms. Duke Math. J. 139, 185-202 (2007).
-
(2007)
Duke Math. J.
, vol.139
, pp. 185-202
-
-
Phillips, N.C.1
Weaver, N.C.2
-
24
-
-
0003785547
-
-
2nd edn. Perspectives in Mathematical Logic, Springer, Berlin
-
Shelah, S.: Proper and Improper Forcing, 2nd edn. Perspectives in Mathematical Logic, Springer, Berlin (1998).
-
(1998)
Proper and Improper Forcing
-
-
Shelah, S.1
-
25
-
-
77952880111
-
Divisible operators in von Neumann algebras
-
(in press)
-
Sherman, D.: Divisible operators in von Neumann algebras. Illinois J. Math. (in press).
-
Illinois J. Math.
-
-
Sherman, D.1
|