메뉴 건너뛰기




Volumn , Issue , 2009, Pages 5295-5298

Water demand prediction model based on radial basis function neural network

Author keywords

Dynamic clustering algorithm; Neural network; Radial basis function; Water demand prediction

Indexed keywords

AGRICULTURAL WATER; ARTIFICIAL NEURAL NETWORK; CLUSTER CENTERS; CONVERGENCE SPEED; DISTRIBUTED STORAGE; DOMESTIC WATER; DYNAMIC CLUSTERING; DYNAMIC CLUSTERING ALGORITHM; FUZZY INFORMATION; HIDDEN LAYERS; HUMAN BRAIN; INDUSTRIAL WATER; INFLUENCING FACTOR; INITIAL WEIGHT VALUES; NETWORK LEARNING; NON-LINEARITY; NONCONVEXITY; NONLOCALITIES; OUTPUT LAYER; PARALLEL INFORMATION PROCESSING; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; RBF NEURAL NETWORK; RELATIVE ERRORS; RURAL HOUSEHOLDS; SELF-LEARNING; URBAN-HOUSEHOLD; WATER CONSUMPTION; WATER DEMAND;

EID: 77952749576     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICISE.2009.1343     Document Type: Conference Paper
Times cited : (5)

References (9)
  • 2
    • 0030197198 scopus 로고    scopus 로고
    • Cooperatitive genetic evolution of radial basis function certers and widths for time series prediction
    • Whitehead B A.Cooperatitive genetic evolution of radial basis function certers and widths for time series prediction.IEEE Transactions on Neural Networks,vol.7(4),pp.869-880,1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1
  • 3
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of sequential mininal radial basis function(RBF) neural network leaning algorithm
    • Lu Y W,Sundararajan N and Saratchandran P.Performance evaluation of sequential mininal radial basis function(RBF) neural network leaning algorithm.IEEE Transactions on Neural Networks,vol.9(6),pp.308-317,1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 308-317
    • Lu, Y.W.1    Sundararajan, N.2    Saratchandran, P.3
  • 4
    • 0000621802 scopus 로고
    • Multi-variable functional interpolation and adaptive networks
    • D.S. Broomhead and D. Lowe, Multi-variable functional interpolation and adaptive networks.Complex Systems,vol. 2(3),pp.321-355,1988.
    • (1988) Complex Systems , vol.2 , Issue.3 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 5
    • 0000672424 scopus 로고
    • Faster learning in networks of locally-tuned processing units
    • J. Moody and C. Darken, Faster learning in networks of locally-tuned processing units.Neural Computation.vol. 1(2),pp. 281-294,1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 6
    • 4944239007 scopus 로고    scopus 로고
    • RBF neural networks for the prediction of building interference effects
    • A. Zhang and L. Zhang, RBF neural networks for the prediction of building interference effects.Computers & Structures. 2004(82): 2333-2339.
    • (2004) Computers & Structures , Issue.82 , pp. 2333-2339
    • Zhang, A.1    Zhang, L.2
  • 7
    • 27444441580 scopus 로고    scopus 로고
    • Optimum design of structures by an improved genetic algorithm using neural networks
    • J
    • Salajegheh, E and Gholizadeh, S.Optimum design of structures by an improved genetic algorithm using neural networks[J].Advances in Engineering Software,vol..36 (11-12), pp.757-767,2005.
    • (2005) Advances in Engineering Software , vol.36 , Issue.11-12 , pp. 757-767
    • Salajegheh, E.1    Gholizadeh, S.2
  • 8
    • 0038597789 scopus 로고    scopus 로고
    • Study on the Algorithms of Selecting the Radial Basis Function Center
    • J
    • ZHU Mingxing and ZHANG Delong.Study on the Algorithms of Selecting the Radial Basis Function Center[J].Journal of ANHUI UNIVERSITY(NATURAL SCIENCES), vol. 24(1),pp.74-78,2000.
    • (2000) Journal of Anhui University(Natural Sciences) , vol.24 , Issue.1 , pp. 74-78
    • Zhu, M.1    Zhang, D.2
  • 9
    • 0035672253 scopus 로고    scopus 로고
    • Study and implement of radial basis function neural network
    • J
    • ZHOU Jun wu,SUN Chuan yao,WANG Fu li.Study and implement of radial basis function neural network[J].Mining and Metallurgy, vol.10(4),pp.71-75,2001.
    • (2001) Mining and Metallurgy , vol.10 , Issue.4 , pp. 71-75
    • Zhou, J.W.1    Sun, C.Y.2    Wang, F.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.