메뉴 건너뛰기




Volumn , Issue , 2010, Pages 241-245

A method of honey plant classification based on IR spectrum: Extract feature wavelength using genetic algorithm and classify using linear discriminate analysis

Author keywords

Bayesian decision; Feature wavelength; Genetic arithmetic; Linear classifier

Indexed keywords

BAYESIAN; BAYESIAN DECISION; DISCRIMINATE ANALYSIS; ERROR RATE; FITNESS FUNCTIONS; GENETIC ARITHMETIC; HIGH DIMENSIONAL DATA; HIGHER DIMENSIONS; INFORMATION EXTRACTION; IR SPECTRUM; LDA CLASSIFIERS; LINEAR CLASSIFIERS; MODEL CLASSIFICATION; NEAR INFRARED SPECTRA; NEAR-INFRARED SPECTRUM; PLANT CLASSIFICATION; S-ALGORITHMS;

EID: 77952687783     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IITSI.2010.105     Document Type: Conference Paper
Times cited : (3)

References (17)
  • 2
    • 0026782330 scopus 로고
    • Optimization of calibration data with the dynamic genetic algorithm
    • J
    • Tong-Hua Li, C. B. Lucasius, G. Kateman. Optimization of calibration data with the dynamic genetic algorithm[J]. Anal Chim Acta.1992, 26(8):123-134.
    • (1992) Anal Chim Acta , vol.26 , Issue.8 , pp. 123-134
    • Li, T.-H.1    Lucasius, C.B.2    Kateman, G.3
  • 3
    • 12344295574 scopus 로고    scopus 로고
    • Region selection method of near infrared spectrum based on genetic algorithm
    • [J]. [J], 2004, 35 (5) :152-156
    • ZHU Shiping, WANG Yiming, ZHANG Xiaochao, et al. Region selection method of near infrared spectrum based on genetic algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35 (5):152-156. [J], 2004, 35 (5) :152-156.
    • (2004) Transactions of the Chinese Society for Agricultural Machinery , vol.35 , Issue.5 , pp. 152-156
    • Zhu, S.1    Wang, Y.2    Zhang, X.3
  • 4
    • 33750416881 scopus 로고    scopus 로고
    • Application of wavelength selection algorithm to measure the effective component of Chinese medicine based on near-infrared spectroscopy
    • [J], [J], 2006, 26 (9) :1618-1620
    • GU Xiaoyu, XU Kexin. Application of wavelength selection algorithm to measure the effective component of Chinese medicine based on near-infrared spectroscopy[J], Spectroscopy and Spectral Analysis, 2006, 26(9):1618-1620. [J], 2006, 26 (9) :1618-1620.
    • (2006) Spectroscopy and Spectral Analysis , vol.26 , Issue.9 , pp. 1618-1620
    • Gu, X.1    Xu, K.2
  • 5
    • 10444224550 scopus 로고    scopus 로고
    • Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique
    • [J]., 2004, 16(4) :528-542
    • CHU Xiaoli, YUAN Hongfu, LU Wan-zhen. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Progress of Chemistry[J]. 2004,16(4):528-542. [J]., 2004, 16(4) :528-542.
    • (2004) Progress of Chemistry[J] , vol.16 , Issue.4 , pp. 528-542
    • Chu, X.1    Yuan, H.2    Lu, W.-Z.3
  • 6
    • 0030333180 scopus 로고    scopus 로고
    • Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: Application to near-infrared spectroscopy
    • Bangalore A S, Shaffer R E, Small G W, Arnold M A. Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: application to near-infrared spectroscopy. Anal. Chem., 1996, 68: 4200-4217.
    • (1996) Anal. Chem. , vol.68 , pp. 4200-4217
    • Bangalore, A.S.1    Shaffer, R.E.2    Small, G.W.3    Arnold, M.A.4
  • 7
    • 85002377847 scopus 로고
    • Genetic algorithms as a strategy for feature selection
    • J
    • Leardi R. Genetic algorithms as a strategy for feature selection [J]. J. Chemom., 1992, 6: 267-281.
    • (1992) J. Chemom. , vol.6 , pp. 267-281
    • Leardi, R.1
  • 9
    • 7044253703 scopus 로고    scopus 로고
    • Variable selection for partial least squares modeling by genetic algorithms
    • [J]. [J]., 2001, 29: 437-442
    • CHU Xiaoli, YUAN Hongfu, WANG Yanbin, LU Wanzhen. Variable selection for partial least squares modeling by genetic algorithms[J].Chin. J. Anal. Chem, 2001, 29: 437-442. [J]., 2001, 29: 437-442.
    • (2001) Chin. J. Anal. Chem , vol.29 , pp. 437-442
    • Chu, X.1    Yuan, H.2    Wang, Y.3    Lu, W.4
  • 10
    • 0036757852 scopus 로고    scopus 로고
    • Wavelength selection for multivariate calibration using a genetic algorithm: A novel initializationstrategy
    • J
    • Goicoechea H C, Olivieri A C. J. Wavelength selection for multivariate calibration using a genetic algorithm: A novel initializationstrategy [J].Chem. Inf. Comput. Sci. 2002, 42: 1146-1153
    • (2002) Chem. Inf. Comput. Sci. , vol.42 , pp. 1146-1153
    • Goicoechea, H.C.1    Olivieri, A.C.J.2
  • 11
    • 0035980458 scopus 로고    scopus 로고
    • Monitoring ethylene content in heterophasic copolymers by near-infrared spectroscopy: Standardisation of the calibration model
    • S.Macho, A. Rius, Monitoring ethylene content in heterophasic copolymers by near-infrared spectroscopy: Standardisation of the calibration model,Analytica Chimica Acta, 2001(45): 213-220
    • (2001) Analytica Chimica Acta , Issue.45 , pp. 213-220
    • Macho, S.1    Rius, A.2
  • 12
    • 0037470203 scopus 로고    scopus 로고
    • Separation of data on the training and test set for modelling: A case study for modelling of five colour properties of a white pigment
    • Karmen R., Jure z. et al, Separation of data on the training and test set for modelling: a case study for modelling of five colour properties of a white pigment,Chemon.Intell. Lab.Syst.,2003(65): 221-229
    • (2003) Chemon.Intell. Lab.Syst. , Issue.65 , pp. 221-229
    • Karmen, R.1    Jure, Z.2
  • 13
    • 0029974348 scopus 로고    scopus 로고
    • Artificial neural networks in classification of NIR spectral data: Design of the training set
    • W.Wu,B.Walczak et al, Artificial neural networks in classification of NIR spectral data: Design of the training set, Chemon.Intell. Lab.Syst.1996(33): 35-46
    • (1996) Chemon.Intell. Lab.Syst. , Issue.33 , pp. 35-46
    • Wu, W.1    Walczak, B.2
  • 14
    • 0033014352 scopus 로고    scopus 로고
    • Selecting a representative training set for the classification of demolition waste using remote NIR sensing
    • P.J.de Groot, G.J Postma et al, Selecting a representative training set for the classification of demolition waste using remote NIR sensing,Analytica Chimica Acta,1999(392): 67-75
    • (1999) Analytica Chimica Acta , Issue.392 , pp. 67-75
    • De Groot, P.J.1    Postma, G.J.2
  • 15
    • 11944254534 scopus 로고
    • General Least-squares smoothing and differentiation by the convolution (SAVITZKY-GOLAY) method
    • GORRY PA, General Least-squares smoothing and differentiation by the convolution (SAVITZKY-GOLAY) method. Anal. Chem. 62 (1990) 570-573.
    • (1990) Anal. Chem. , vol.62 , pp. 570-573
    • Gorry, P.A.1
  • 16
    • 0024701578 scopus 로고
    • Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
    • BARNES, RJ, DHANOA, MS, LISTER, SJ, Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra, Applied Spectroscopy. 43 (1989) 772-777.
    • (1989) Applied Spectroscopy , vol.43 , pp. 772-777
    • Barnes, R.J.1    Dhanoa, M.S.2    Lister, S.J.3
  • 17
    • 41049103064 scopus 로고    scopus 로고
    • Successive projections algorithm combined with uninformative variable elimination for spectral variable selection
    • Ye, SF; Wang, D; Min, SG. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection, Chemom. Intell. Lab. Syst. 91 (2008) 194-199.
    • (2008) Chemom. Intell. Lab. Syst. , vol.91 , pp. 194-199
    • Ye, S.F.1    Wang, D.2    Min, S.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.