메뉴 건너뛰기




Volumn , Issue , 2010, Pages 4-9

Subspace similarity search using the ideas of ranking and top-k retrieval

Author keywords

[No Author keywords available]

Indexed keywords

NEAREST NEIGHBORS; SIMILARITY QUERY; SIMILARITY SEARCH;

EID: 77952667427     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDEW.2010.5452771     Document Type: Conference Paper
Times cited : (7)

References (19)
  • 2
    • 0025447750 scopus 로고
    • The R*-Tree: An efficient and robust access method for points and rectangles
    • N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An efficient and robust access method for points and rectangles. In Proc. SIGMOD, pages 322-331, 1990.
    • (1990) Proc. SIGMOD , pp. 322-331
    • Beckmann, N.1    Kriegel, H.-P.2    Schneider, R.3    Seeger, B.4
  • 3
    • 0001802606 scopus 로고    scopus 로고
    • The X-Tree: An index structure for high-dimensional data
    • S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An index structure for high-dimensional data. In Proc. VLDB, 1996.
    • (1996) Proc. VLDB
    • Berchtold, S.1    Keim, D.A.2    Kriegel, H.-P.3
  • 5
    • 0033075316 scopus 로고    scopus 로고
    • Combining fuzzy information from multiple systems
    • R. Fagin. Combining fuzzy information from multiple systems. JCSS, 58:83-99, 1999.
    • (1999) JCSS , vol.58 , pp. 83-99
    • Fagin, R.1
  • 6
    • 0038504811 scopus 로고    scopus 로고
    • Optimal aggregation algorithms for middleware
    • R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. JCSS, 66(4):614-656, 2003.
    • (2003) JCSS , vol.66 , Issue.4 , pp. 614-656
    • Fagin, R.1    Lotem, A.2    Naor, M.3
  • 7
    • 0021615874 scopus 로고
    • R-Trees: A dynamic index structure for spatial searching
    • A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proc. SIGMOD, 1984.
    • (1984) Proc. SIGMOD
    • Guttman, A.1
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 84877347265 scopus 로고    scopus 로고
    • Optimizing multi-feature queries for image databases
    • U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for image databases. In Proc. VLDB, 2000.
    • (2000) Proc. VLDB
    • Güntzer, U.1    Balke, W.-T.2    Kießling, W.3
  • 10
    • 77952587605 scopus 로고    scopus 로고
    • Incremental semi-supervised subspace learning for image retrieval
    • X. He. Incremental semi-supervised subspace learning for image retrieval. In Proc. ACM MM, 2005.
    • (2005) Proc. ACM MM
    • He, X.1
  • 11
    • 0031162081 scopus 로고    scopus 로고
    • The SR-tree: An index structure for high-dimensional nearest neighbor queries
    • N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In Proc. SIGMOD, 1997.
    • (1997) Proc. SIGMOD
    • Katayama, N.1    Satoh, S.2
  • 12
    • 77952640579 scopus 로고    scopus 로고
    • Use of image subset features in image retrieval with self-organizing maps
    • M. Koskela, J. Laaksonen, and E. Oja. Use of image subset features in image retrieval with self-organizing maps. In Proc. CIVR, 2004.
    • (2004) Proc. CIVR
    • Koskela, M.1    Laaksonen, J.2    Oja, E.3
  • 13
    • 45149117036 scopus 로고    scopus 로고
    • Efficient query processing in arbitrary subspaces using vector approximations
    • H.-P. Kriegel, P. Kröger, M. Schubert, and Z. Zhu. Efficient query processing in arbitrary subspaces using vector approximations. In Proc. SSDBM, 2006.
    • (2006) Proc. SSDBM
    • Kriegel, H.-P.1    Kröger, P.2    Schubert, M.3    Zhu, Z.4
  • 14
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1):1-58, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 15
    • 52649094835 scopus 로고    scopus 로고
    • Similarity search in arbitrary subspaces under Lp-norm
    • X. Lian and L. Chen. Similarity search in arbitrary subspaces under Lp-norm. In Proc. ICDE, 2008.
    • (2008) In Proc. ICDE
    • Lian, X.1    Chen, L.2
  • 16
    • 0032665915 scopus 로고    scopus 로고
    • Query processing issues in image (multimedia) databases
    • S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) databases. In Proc. ICDE, 1999.
    • (1999) Proc. ICDE
    • Nepal, S.1    Ramakrishna, M.V.2
  • 18
    • 0032094249 scopus 로고    scopus 로고
    • Optimal multi-step k-nearest neighbor search
    • T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proc. SIGMOD, 1998.
    • (1998) Proc. SIGMOD
    • Seidl, T.1    Kriegel, H.-P.2
  • 19
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In Proc. VLDB, 1998.
    • (1998) Proc. VLDB
    • Weber, R.1    Schek, H.-J.2    Blott, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.