메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1740-1751

Feature extraction based on subspace methods for regression problems

Author keywords

Dimensionality reduction; Feature extraction; LDA; PCA; Regression; Subspace method

Indexed keywords

DIMENSIONALITY REDUCTION; FEATURE EXTRACTION METHODS; LINEAR DISCRIMINANT ANALYSIS; LINEAR TRANSFORM; OPTIMIZATION PROCESS; PRINCIPLE COMPONENT ANALYSIS; REGRESSION PROBLEM; SUB-SPACE METHODS; TARGET INFORMATION; TARGET VALUES;

EID: 77952584207     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.10.025     Document Type: Article
Times cited : (14)

References (31)
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A., Sejnowski T. An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995, 7(6):1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 6
    • 37849040752 scopus 로고    scopus 로고
    • Spectral regression: a unified subspace learning framework for content-based image retrieval, in: ACM Multimedia.
    • D. Cai, X. He, J. Han, Spectral regression: a unified subspace learning framework for content-based image retrieval, in: ACM Multimedia, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Han, J.3
  • 7
    • 0022266934 scopus 로고
    • An optimal orthonormal system for discriminant analysis
    • Okada T., Tomita S. An optimal orthonormal system for discriminant analysis. Pattern Recognition 1985, 18(2):139-144.
    • (1985) Pattern Recognition , vol.18 , Issue.2 , pp. 139-144
    • Okada, T.1    Tomita, S.2
  • 8
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of lda: The Chernoff criterion
    • Loog M., Duin R. Linear dimensionality reduction via a heteroscedastic extension of lda: The Chernoff criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004, 26(6):732-739.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.2
  • 9
    • 22944478331 scopus 로고    scopus 로고
    • Face recognition using direct-weighted lda, in: Lecture Notes in Computer Science.
    • D. Zhou, X. Yang, Face recognition using direct-weighted lda, in: Lecture Notes in Computer Science, vol. 3157, 2004, pp. 760-768.
    • (2004) , vol.3157 , pp. 760-768
    • Zhou, D.1    Yang, X.2
  • 11
    • 0242578110 scopus 로고    scopus 로고
    • Feature extraction based on ica for binary classification problems
    • Kwak N., Choi C.-H. Feature extraction based on ica for binary classification problems. IEEE Transactions on Knowledge and Data Engineering 2003, 15(6):1374-1388.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1374-1388
    • Kwak, N.1    Choi, C.-H.2
  • 12
    • 77952584161 scopus 로고    scopus 로고
    • Neighborhood components analysis, NIPS.
    • J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Neighborhood components analysis, NIPS. URL: 〈〉. http://www.cs.utoronto.ca/~roweis/papers/ncanips.pdf.
    • Goldberger, J.1    Roweis, S.2    Hinton, G.3    Salakhutdinov, R.4
  • 16
    • 77952585190 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning, first ed, The MIT Press.
    • C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, first ed, The MIT Press, 2006.
    • (2006)
    • Rasmussen, C.1    Williams, C.2
  • 17
    • 0003558340 scopus 로고
    • John Wiley, New York, (Chapter 3)
    • Weisberg S. Applied Linear Regression 1985, John Wiley, New York, p. 324 (Chapter 3). second ed.
    • (1985) Applied Linear Regression , pp. 324
    • Weisberg, S.1
  • 19
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • Li K.C. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association 1991, 86:316-342.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 316-342
    • Li, K.C.1
  • 20
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma
    • Li K.C. On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma. Journal of the American Statistical Association 1992, 87:1025-1039.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 1025-1039
    • Li, K.C.1
  • 21
    • 33749846009 scopus 로고    scopus 로고
    • Dimensionality reduction based on ica for regression problems, in: Proceedings of the International Conference on Artificial Neural Networks.
    • N. Kwak, C. Kim, Dimensionality reduction based on ica for regression problems, in: Proceedings of the International Conference on Artificial Neural Networks, 2006, pp. 1-10.
    • (2006) , pp. 1-10
    • Kwak, N.1    Kim, C.2
  • 22
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Stein C. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 1981, 9:1135-1151.
    • (1981) The Annals of Statistics , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 23
    • 34547964600 scopus 로고    scopus 로고
    • Least squares linear discriminant analysis, in: Proceedings of the 24th International Conference on Machine Learning.
    • J. Ye, Least squares linear discriminant analysis, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 1087-1093.
    • (2007) , pp. 1087-1093
    • Ye, J.1
  • 24
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with applications to face recognition
    • Lu J., Plataniotis K., Venetsanopoulos A. Regularization studies of linear discriminant analysis in small sample size scenarios with applications to face recognition. Pattern Recognition Letters 2005, 26:181-191.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 181-191
    • Lu, J.1    Plataniotis, K.2    Venetsanopoulos, A.3
  • 26
    • 0035680168 scopus 로고    scopus 로고
    • Small sample learning during multimedia retrieval using biasmap, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, USA.
    • X.S. Zhou, T.S. Huang, Small sample learning during multimedia retrieval using biasmap, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, USA, 2001, pp. 11-17.
    • (2001) , pp. 11-17
    • Zhou, X.S.1    Huang, T.S.2
  • 29
    • 77952580866 scopus 로고    scopus 로고
    • UCI repository of machine learning databases.
    • D. Newman, S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases 〈〉, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Newman, D.1    Hettich, S.2    Blake, C.3    Merz, C.4
  • 30
    • 77952583290 scopus 로고    scopus 로고
    • Orange juice data.
    • M. Meurens, Orange juice data. http://www.dice.ucl.ac.be/mlg/DataBases/ORANGE_JUICE/.
    • Meurens, M.1
  • 31
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • Vijayakumar S., D'Souza A., Schaal S. Incremental online learning in high dimensions. Neural Computation 2005, 17(12):2602-2634.
    • (2005) Neural Computation , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.