-
1
-
-
0040679523
-
The algebraic kernel method for the numerical solution of partial differential equations
-
M.H.A. Abadi and E.L. Ortiz, The algebraic kernel method for the numerical solution of partial differential equations, J. Numer. Funct. Anal. Optim. 12 (1991), pp. 339-360.
-
(1991)
J. Numer. Funct. Anal. Optim
, vol.12
, pp. 339-360
-
-
Abadi, M.H.A.1
Ortiz, E.L.2
-
2
-
-
12244269090
-
Numerical procedure for determining of an unknown parameter in parabolic equation
-
E.C. Baran, Numerical procedure for determining of an unknown parameter in parabolic equation, Appl. Math. Comput. 162 (2005), pp. 1219-1226.
-
(2005)
Appl. Math. Comput
, vol.162
, pp. 1219-1226
-
-
Baran, E.C.1
-
3
-
-
84985357023
-
Numerical solution of some parabolic inverse problems
-
J.R. Cannon and H.M. Yin, Numerical solution of some parabolic inverse problems, Numer. Meth. Part. Differen. Equat. 2 (1990), pp. 177-191.
-
(1990)
Numer. Meth. Part. Differen. Equat
, vol.2
, pp. 177-191
-
-
Cannon, J.R.1
Yin, H.M.2
-
4
-
-
51249161311
-
Determination of source parameter in parabolic equations
-
J.R. Cannon,Y. Lin, and S. Wang, Determination of source parameter in parabolic equations, Meccanica 27 (1992), pp. 85-94.
-
(1992)
Meccanica
, vol.27
, pp. 85-94
-
-
Cannon, J.R.1
Lin, Y.2
Wang, S.3
-
5
-
-
0000293752
-
Numerical procedure for the determination of an unknown coefficient in semilinear parabolic equations
-
J.R. Cannon,Y. Lin, and S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic equations, Inv. Probl. 10 (1994), pp. 227-243.
-
(1994)
Inv. Probl
, vol.10
, pp. 227-243
-
-
Cannon, J.R.1
Lin, Y.2
Xu, S.3
-
6
-
-
0003766476
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamic, Prentice-Hall, Englewood Cliffs, NJ, 1988.
-
(1988)
Spectral Methods in Fluid Dynamic
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
7
-
-
0035450576
-
An inverse problem of finding a source parameter in a semilinear parabolic equation
-
M. Dehghan, An inverse problem of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model. 25 (2001), pp. 743-754.
-
(2001)
Appl. Math. Model
, vol.25
, pp. 743-754
-
-
Dehghan, M.1
-
8
-
-
0035370485
-
Determination of a control parameter in the two-dimensional diffusion equation
-
-, Determination of a control parameter in the two-dimensional diffusion equation, Appl. Numer. Math. 37 (2001), pp. 489-502.
-
(2001)
Appl. Numer. Math
, vol.37
, pp. 489-502
-
-
-
9
-
-
0036467361
-
Fourth-order techniques for identifying a control parameter in the parabolic equations
-
-, Fourth-order techniques for identifying a control parameter in the parabolic equations, Int. J. Eng. Sci. 40 (2002), pp. 433-447.
-
(2002)
Int. J. Eng. Sci
, vol.40
, pp. 433-447
-
-
-
10
-
-
0037443331
-
Numerical solution of one-dimensional parabolic inverse problem
-
-, Numerical solution of one-dimensional parabolic inverse problem, Appl. Math. Comput. 136 (2003), pp. 333-344.
-
(2003)
Appl. Math. Comput
, vol.136
, pp. 333-344
-
-
-
11
-
-
0036445956
-
Determination of a control function in three-dimensional parabolic equations
-
-, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul. 61(2) (2003), pp. 89-100.
-
(2003)
Math. Comput. Simul.
, vol.61
, Issue.2
, pp. 89-100
-
-
-
12
-
-
19744375661
-
Parameter determination in a partial differential equation from the overspecified data
-
-, Parameter determination in a partial differential equation from the overspecified data, Math. Comput. Model. 41(2-3) (2005), pp. 196-213.
-
(2005)
Math. Comput. Model
, vol.41
, Issue.2-3
, pp. 196-213
-
-
-
13
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
-, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul. 71 (2006), pp. 16-30.
-
(2006)
Math. Comput. Simul
, vol.71
, pp. 16-30
-
-
-
14
-
-
33645276878
-
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
-
-, A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer. Meth. Part. Differen. Equat. 22 (2006), pp. 220-257.
-
(2006)
Numer. Meth. Part. Differen. Equat
, vol.22
, pp. 220-257
-
-
-
15
-
-
33749559910
-
The one-dimensional heat equations subject to a boundary integral specifications
-
-, The one-dimensional heat equations subject to a boundary integral specifications, Chaos, Solitons and Fractals 32 (2007), pp. 661-675.
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, pp. 661-675
-
-
-
17
-
-
12244254476
-
Numerical procedure for the simultaneous determination of unknown coefficients in a parabolic equation
-
A.G. Fatullayev, Numerical procedure for the simultaneous determination of unknown coefficients in a parabolic equation, Appl. Math. Comput. 162 (2005), pp. 1367-1375.
-
(2005)
Appl. Math. Comput
, vol.162
, pp. 1367-1375
-
-
Fatullayev, A.G.1
-
18
-
-
0006796729
-
-
R. Voigt, D. Gottlieb, and M. Hussaini, ed., SIAM, Philadelphia
-
D. Gottlieb, M.Y. Hussaini, and S. Orszag, Theory and Applications of Spectral Methods for Partial Differential Equations, R. Voigt, D. Gottlieb, and M. Hussaini, ed., SIAM, Philadelphia, 1984.
-
(1984)
Theory and Applications of Spectral Methods for Partial Differential Equations
-
-
Gottlieb, D.1
Hussaini, M.Y.2
Orszag, S.3
-
19
-
-
0034237633
-
Tau approximation method of the Hubbell rectangular source integral
-
S.L. Kalla and H.G. Khajah, Tau approximation method of the Hubbell rectangular source integral, Radiat. Phys. Chem. 59(1) (2000), pp. 17-21.
-
(2000)
Radiat. Phys. Chem.
, vol.59
, Issue.1
, pp. 17-21
-
-
Kalla, S.L.1
Khajah, H.G.2
-
20
-
-
85162699057
-
Trigonometric interpolation of empirical and analytic functions
-
C. Lanczos, Trigonometric interpolation of empirical and analytic functions, J. Math. Phys. 17 (1938), pp. 123-199.
-
(1938)
J. Math. Phys
, vol.17
, pp. 123-199
-
-
Lanczos, C.1
-
21
-
-
0003398168
-
-
Pitman, London
-
-, Applied Analysis, Pitman, London, 1957.
-
(1957)
Applied Analysis
-
-
-
22
-
-
1442264994
-
New implementation of the tau method for PDEs
-
J. Matos, M.J. Rodrigues, and P.B. Vasconcelos, New implementation of the tau method for PDEs, J. Comput. Appl. Math. 164-165 (2004), pp. 555-567.
-
(2004)
J. Comput. Appl. Math.
, vol.164-165
, pp. 555-567
-
-
Matos, J.1
Rodrigues, M.J.2
Vasconcelos, P.B.3
-
24
-
-
0021177673
-
Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method
-
E.L. Ortiz and H. Samara, Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method, Comput. Math. Appl. 10(4) (1984), pp. 5-13.
-
(1984)
Comput. Math. Appl.
, vol.10
, Issue.4
, pp. 5-13
-
-
Ortiz, E.L.1
Samara, H.2
-
25
-
-
0037082721
-
Tau method approximation for radiative transfer problems in a slab medium
-
M. Razzaghi, S. Oppenheimer, and F. Ahmad, Tau method approximation for radiative transfer problems in a slab medium, J. Quant. Spectrosc. Radiat. Transf. 72(4) (2002), pp. 439-447.
-
(2002)
J. Quant. Spectrosc. Radiat. Transf.
, vol.72
, Issue.4
, pp. 439-447
-
-
Razzaghi, M.1
Oppenheimer, S.2
Ahmad, F.3
-
26
-
-
28244459412
-
A tau method approximation for the diffusion equation with nonlocal boundary conditions
-
A. Saadatmandi and M. Razzaghi, A tau method approximation for the diffusion equation with nonlocal boundary conditions, Int. J. Comput. Math. 81 (2004), pp. 1427-1432.
-
(2004)
Int. J. Comput. Math
, vol.81
, pp. 1427-1432
-
-
Saadatmandi, A.1
Razzaghi, M.2
-
27
-
-
35448960877
-
Numerical solution of the klein-gordon equation via He's variational iteration method
-
F. Shakeri and M. Dehghan, Numerical solution of the Klein-Gordon equation via He's variational iteration method, Numer. Meth. Part. Differen. Equat. 51 (2008), pp. 89-97.
-
(2008)
Numer. Meth. Part. Differen. Equat
, vol.51
, pp. 89-97
-
-
Shakeri, F.1
Dehghan, M.2
|