메뉴 건너뛰기




Volumn 32, Issue 6, 2010, Pages 1723-1734

Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members

Author keywords

Adaptive neuro fuzzy inference system; Ferrocement; Moment; Neural networks

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; BACK-PROPAGATION NEURAL NETWORKS; FERROCEMENT; INPUT VARIABLES; MOMENT CAPACITY; NEURAL NETWORKS MODEL; PARAMETRIC STUDY; PREDICTIVE TOOLS; WIRE MESHES;

EID: 77952547031     PISSN: 01410296     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engstruct.2010.02.024     Document Type: Article
Times cited : (40)

References (47)
  • 2
    • 33845594705 scopus 로고    scopus 로고
    • Evaluation of liquefaction potential of soil deposits using artificial neural networks
    • Hanna M.A., Ural D., Saygili G. Evaluation of liquefaction potential of soil deposits using artificial neural networks. J Comput Aided Eng Softw 2007, 24(1):5-16.
    • (2007) J Comput Aided Eng Softw , vol.24 , Issue.1 , pp. 5-16
    • Hanna, M.A.1    Ural, D.2    Saygili, G.3
  • 3
    • 36749010178 scopus 로고    scopus 로고
    • Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
    • Padmini D., Iamparuthi K., Sudheer K.P. Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. J Comput Geotech 2008, 35:33-46.
    • (2008) J Comput Geotech , vol.35 , pp. 33-46
    • Padmini, D.1    Iamparuthi, K.2    Sudheer, K.P.3
  • 4
    • 77952551676 scopus 로고    scopus 로고
    • Artificial neural networks for beginners. In: Cognitive and computing sciences. University of Sussex
    • Gershenson C. Artificial neural networks for beginners. In: Cognitive and computing sciences. University of Sussex.
    • Gershenson, C.1
  • 5
    • 0028416331 scopus 로고
    • Neural networks in civil engineering, principle and understanding
    • Flood I., Kartam N. Neural networks in civil engineering, principle and understanding. ASCE J Comput Civil Eng 1994, 8(2):131-148.
    • (1994) ASCE J Comput Civil Eng , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 6
    • 0024891319 scopus 로고
    • Perception learning in engineering design
    • Adeli H., Yeh C. Perception learning in engineering design. Microcomput Civil Eng 1989, 4(4):247-256.
    • (1989) Microcomput Civil Eng , vol.4 , Issue.4 , pp. 247-256
    • Adeli, H.1    Yeh, C.2
  • 7
    • 0033101598 scopus 로고    scopus 로고
    • Damage assessment of jacketed RC columns using vibration tests
    • Feng M.Q., Bahng E.Y. Damage assessment of jacketed RC columns using vibration tests. J Struct Eng 1999, 125(3):265-271.
    • (1999) J Struct Eng , vol.125 , Issue.3 , pp. 265-271
    • Feng, M.Q.1    Bahng, E.Y.2
  • 8
    • 77952553720 scopus 로고
    • Neural networks in dynamic analysis of bridges. In Proc., 8th conf. computing in civil engineering. New York: ASCE
    • Chen SS, Shah K. Neural networks in dynamic analysis of bridges. In Proc., 8th conf. computing in civil engineering. New York: ASCE; 1992. p. 1058-65.
    • (1992) , pp. 1058-65
    • Chen, S.S.1    Shah, K.2
  • 9
    • 0001107939 scopus 로고    scopus 로고
    • Identification of a dynamic system using ambient vibration measurements
    • Feng M.Q., Kim J.M. Identification of a dynamic system using ambient vibration measurements. J Appl Mech 1998, 65(2):1010-1023.
    • (1998) J Appl Mech , vol.65 , Issue.2 , pp. 1010-1023
    • Feng, M.Q.1    Kim, J.M.2
  • 12
    • 0032590360 scopus 로고    scopus 로고
    • Application of neural networks for proportioning of concrete mixes
    • Oh J.W., Lee I.W., Kim J.T., Lee G.W. Application of neural networks for proportioning of concrete mixes. ACI Mater J 1999, 96(1):61-67.
    • (1999) ACI Mater J , vol.96 , Issue.1 , pp. 61-67
    • Oh, J.W.1    Lee, I.W.2    Kim, J.T.3    Lee, G.W.4
  • 13
    • 0035398627 scopus 로고    scopus 로고
    • Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks
    • Sanad A., Saka M.P. Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks. J Struct Eng 2001, 127(7):818-828.
    • (2001) J Struct Eng , vol.127 , Issue.7 , pp. 818-828
    • Sanad, A.1    Saka, M.P.2
  • 14
    • 2442480440 scopus 로고    scopus 로고
    • Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups
    • Cladera A., Mar A.R. Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups. J Eng Struct 2004, 26:917-926.
    • (2004) J Eng Struct , vol.26 , pp. 917-926
    • Cladera, A.1    Mar, A.R.2
  • 15
    • 2442562316 scopus 로고    scopus 로고
    • Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups
    • Cladera A., Mar A.R. Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. J Eng Struct 2004, 26:927-936.
    • (2004) J Eng Struct , vol.26 , pp. 927-936
    • Cladera, A.1    Mar, A.R.2
  • 16
    • 27344456821 scopus 로고    scopus 로고
    • A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement
    • Seleemah A.A. A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement. Can J Civil Eng 2005, 32:644-657.
    • (2005) Can J Civil Eng , vol.32 , pp. 644-657
    • Seleemah, A.A.1
  • 17
    • 34248566784 scopus 로고    scopus 로고
    • Modeling and simulation of shear resistance of R/C beams using artificial neural network
    • Abdallaa J.A., Elsanosib A., Abdelwahab A. Modeling and simulation of shear resistance of R/C beams using artificial neural network. J Franklin Inst 2007, 344:741-756.
    • (2007) J Franklin Inst , vol.344 , pp. 741-756
    • Abdallaa, J.A.1    Elsanosib, A.2    Abdelwahab, A.3
  • 18
    • 0027601884 scopus 로고
    • Adaptive network-based fuzzy inference system
    • Jang S.R. Adaptive network-based fuzzy inference system. IEEE 1993, 23(3):665-685.
    • (1993) IEEE , vol.23 , Issue.3 , pp. 665-685
    • Jang, S.R.1
  • 19
    • 0037187347 scopus 로고    scopus 로고
    • Fuzzy neural network modeling of material properties
    • Qian H., Xia B., Li S.Z., Wang F. Fuzzy neural network modeling of material properties. J Mater Process Tech 2002, 122:196-200.
    • (2002) J Mater Process Tech , vol.122 , pp. 196-200
    • Qian, H.1    Xia, B.2    Li, S.Z.3    Wang, F.4
  • 20
    • 8744317013 scopus 로고    scopus 로고
    • Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system
    • Akbuluta S., Samet H., Pamuk S. Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system. J Soil Dyn Earthq Eng 2004, 24:805-814.
    • (2004) J Soil Dyn Earthq Eng , vol.24 , pp. 805-814
    • Akbuluta, S.1    Samet, H.2    Pamuk, S.3
  • 21
    • 33751161912 scopus 로고    scopus 로고
    • Prediction of sulfate expansion of PC mortar using adaptive neuro-fuzzy methodology
    • I'nan G., Göktepe A.B., Ramyar A. Prediction of sulfate expansion of PC mortar using adaptive neuro-fuzzy methodology. Build Environ 2007, 42:1264-1269.
    • (2007) Build Environ , vol.42 , pp. 1264-1269
    • I'nan, G.1    Göktepe, A.B.2    Ramyar, A.3
  • 22
    • 34347257478 scopus 로고    scopus 로고
    • Adaptive network-fuzzy inferencing to estimate concrete strength using mix design
    • Tesfamariam S., Najjaran H. Adaptive network-fuzzy inferencing to estimate concrete strength using mix design. J Mater Civil Eng 2007, 19(7):550-560.
    • (2007) J Mater Civil Eng , vol.19 , Issue.7 , pp. 550-560
    • Tesfamariam, S.1    Najjaran, H.2
  • 23
    • 0015763310 scopus 로고
    • Moment capacity and cracking behavior of ferrocement in flexure
    • Logan D., Shah S.P. Moment capacity and cracking behavior of ferrocement in flexure. ACI J 1973, 70(12):799-804.
    • (1973) ACI J , vol.70 , Issue.12 , pp. 799-804
    • Logan, D.1    Shah, S.P.2
  • 24
    • 77952545077 scopus 로고
    • Flexural characteristics of ferrocement. Ms.c. thesis. Iraq: University of Baghdad
    • Alwash A. S. Flexural characteristics of ferrocement. Ms.c. thesis. Iraq: University of Baghdad; 1974.
    • (1974)
    • Alwash, A.S.1
  • 25
    • 0017549387 scopus 로고
    • Analysis and behavior of ferrocement in flexture
    • Balaguru P.N., Naaman A.E., Shah S.P. Analysis and behavior of ferrocement in flexture. ASCE 1977, 1937-1951.
    • (1977) ASCE , pp. 1937-1951
    • Balaguru, P.N.1    Naaman, A.E.2    Shah, S.P.3
  • 26
    • 0021786520 scopus 로고
    • Flexural behavior of light-weight ferrocement slabs
    • Paramasivam P., Mansur M.S., Ong K.C. Flexural behavior of light-weight ferrocement slabs. J Ferrocement 1985, 15(1):25-33.
    • (1985) J Ferrocement , vol.15 , Issue.1 , pp. 25-33
    • Paramasivam, P.1    Mansur, M.S.2    Ong, K.C.3
  • 27
    • 0022791694 scopus 로고
    • Cracking behavior and ultimate strength of ferrocement in flexure
    • Mansur M.A., Paramasivam P. Cracking behavior and ultimate strength of ferrocement in flexure. J Ferrocement 1986, 16(4):405-415.
    • (1986) J Ferrocement , vol.16 , Issue.4 , pp. 405-415
    • Mansur, M.A.1    Paramasivam, P.2
  • 28
    • 0024090751 scopus 로고
    • Ultimate strength design of ferrocement in flexure
    • Mansur M.A. Ultimate strength design of ferrocement in flexure. J Ferrocement 1988, 18(4):385-395.
    • (1988) J Ferrocement , vol.18 , Issue.4 , pp. 385-395
    • Mansur, M.A.1
  • 29
    • 0023825892 scopus 로고
    • Effect of arrangements of reinforcements on mechanical properties of ferrocement
    • Paramasivam P., Ravindrajah R.S. Effect of arrangements of reinforcements on mechanical properties of ferrocement. ACI Struct J 1988, 3-11.
    • (1988) ACI Struct J , pp. 3-11
    • Paramasivam, P.1    Ravindrajah, R.S.2
  • 30
    • 0025790816 scopus 로고
    • Strength of lightweight ferrocement in flexure
    • Desayi P., Reddy V. Strength of lightweight ferrocement in flexure. J Cement Concr Composites 1991, 13:13-20.
    • (1991) J Cement Concr Composites , vol.13 , pp. 13-20
    • Desayi, P.1    Reddy, V.2
  • 31
    • 0022706115 scopus 로고
    • Flexural design of ferrocement computerized evaluation and design aids
    • Naaman A.E., Homeric J.R. Flexural design of ferrocement computerized evaluation and design aids. J Ferrocement 1986, 16(2):101-116.
    • (1986) J Ferrocement , vol.16 , Issue.2 , pp. 101-116
    • Naaman, A.E.1    Homeric, J.R.2
  • 32
    • 77952543095 scopus 로고    scopus 로고
    • Hybrid neural network/computational program to the analysis of elastic-plastic structures. In: Neural networks in Mechanics of Structures and Materials. Udine, Italy
    • Waszczyszyn Z, Pabisek E, Mucha G. Hybrid neural network/computational program to the analysis of elastic-plastic structures. In: Neural networks in Mechanics of Structures and Materials. Udine, Italy; 1998. p. 19-23.
    • (1998) , pp. 19-23
    • Waszczyszyn, Z.1    Pabisek, E.2    Mucha, G.3
  • 33
    • 77952542812 scopus 로고    scopus 로고
    • Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
    • Topcu I.B., Saridemir M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 2007.
    • (2007) Comput Mater Sci
    • Topcu, I.B.1    Saridemir, M.2
  • 35
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. AI Expert 1991, 6(7):47-51.
    • (1991) AI Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 37
    • 77952545874 scopus 로고    scopus 로고
    • Fuzzy logic toolbox user's guide for use with MATLAB
    • Fuzzy logic toolbox user's guide for use with MATLAB 2004.
    • (2004)
  • 38
    • 77952552831 scopus 로고    scopus 로고
    • Evaluation of membership functions for fuzzy logic controlled induction motor drive
    • Zaho J., Bose K.B. Evaluation of membership functions for fuzzy logic controlled induction motor drive. IEEE J 2002, 229-234.
    • (2002) IEEE J , pp. 229-234
    • Zaho, J.1    Bose, K.B.2
  • 41
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Machine Studies 1975, 7(1):1-13.
    • (1975) Int J Man-Machine Studies , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 43
    • 77952554408 scopus 로고    scopus 로고
    • Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization
    • Hamidian D., Seyedpoor M.S. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization. J Appl. Math. Modelling 2009.
    • (2009) J Appl. Math. Modelling
    • Hamidian, D.1    Seyedpoor, M.S.2
  • 44
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 1994, 2(3).
    • (1994) J Intell Fuzzy Syst , vol.2 , Issue.3
    • Chiu, S.1
  • 45
    • 0033104629 scopus 로고    scopus 로고
    • Three machine learning techniques for automatic determination of rules to control locomotion
    • Joni S., Jankovi T., Gaji V., Popovi D. Three machine learning techniques for automatic determination of rules to control locomotion. J IEEE 1999, 46(3):300-310.
    • (1999) J IEEE , vol.46 , Issue.3 , pp. 300-310
    • Joni, S.1    Jankovi, T.2    Gaji, V.3    Popovi, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.