메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 2186-2195

Semi-supervised Gaussian process latent variable model with pairwise constraints

Author keywords

Dimensionality reduction; Gaussian process latent variable model; Pairwise constraints; Semi supervised learning

Indexed keywords

DIMENSIONALITY REDUCTION; GAUSSIAN PROCESSES; LATENT VARIABLE MODELS; PAIRWISE CONSTRAINTS; SEMI-SUPERVISED LEARNING;

EID: 77952543650     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.01.021     Document Type: Article
Times cited : (26)

References (30)
  • 4
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., Muller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10(5):1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 5
    • 63449129600 scopus 로고    scopus 로고
    • Iterative subspace analysis based on feature line distance
    • Pang Y., Yuan Y., Li X. Iterative subspace analysis based on feature line distance. IEEE Transactions on Image Processing, 2009, 18(4):903-907.
    • (2009) IEEE Transactions on Image Processing, , vol.18 , Issue.4 , pp. 903-907
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 7
    • 33745854283 scopus 로고    scopus 로고
    • Riemannian manifold learning for nonlinear dimensionality reduction
    • Graz, Austria, May
    • T. Lin, H. Zha, S. Lee, Riemannian manifold learning for nonlinear dimensionality reduction, in: Proceeding of the European Conference on Computer Vision, Graz, Austria, May 2006, pp. 44-55.
    • (2006) Proceeding of the European Conference on Computer Vision , pp. 44-55
    • Lin, T.1    Zha, H.2    Lee, S.3
  • 11
    • 27844549624 scopus 로고    scopus 로고
    • Gaussian process models for visualization of high dimensional data
    • Lawrence N.D. Gaussian process models for visualization of high dimensional data. Advance in Neural Information Processing Systems 2004, 16:329-336.
    • (2004) Advance in Neural Information Processing Systems , vol.16 , pp. 329-336
    • Lawrence, N.D.1
  • 12
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence N.D. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 2005, 6:1783-1816.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 14
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • Girolami M., Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation 2006, 18(8):1790-1817.
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 15
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: mean-field algorithms
    • Opper M., Winther O. Gaussian processes for classification: mean-field algorithms. Neural Computation 2000, 12(11):2655-2684.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 16
    • 34548150972 scopus 로고    scopus 로고
    • Robust self-tuning semi-supervised learning
    • Wang F., Zhang C. Robust self-tuning semi-supervised learning. Neurocomputing 2008, 71(16-18):2931-2939.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 2931-2939
    • Wang, F.1    Zhang, C.2
  • 17
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • Zhao J., Lu K., He X. Locality sensitive semi-supervised feature selection. Neurocomputing 2008, 71(10-12):1842-1849.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 19
    • 33845594193 scopus 로고    scopus 로고
    • Learning distance metrics with contextual constraints for image retrieval
    • Proceeding of the International Conference on Computer Vision and Pattern Recognition, NewYork, USA, Jun.
    • S.C. H. Hoi, W. Liu, M.R. Lyu, W. Ma, Learning distance metrics with contextual constraints for image retrieval, in: Proceeding of the International Conference on Computer Vision and Pattern Recognition, NewYork, USA, Jun. 2006, pp. 2072-2078.
    • (2006) , pp. 2072-2078
    • Hoi, S.C.H.1    Liu, W.2    Lyu, M.R.3    Ma, W.4
  • 22
    • 57349091730 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction using pairwise equivalence constraints
    • Proceeding of the International Conference on Computer Vision Theory and Applications, Funchal, Portugal, Jan.
    • H. Cevikalp, J. Verbeek, F. Jurie, A. Kläser, Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceeding of the International Conference on Computer Vision Theory and Applications, Funchal, Portugal, Jan. 2008, pp. 489-496.
    • (2008) , pp. 489-496
    • Cevikalp, H.1    Verbeek, J.2    Jurie, F.3    Kläser, A.4
  • 25
    • 33749566317 scopus 로고    scopus 로고
    • Supervised probabilistic principal component analysis
    • Proceedings of the Intinternational Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug
    • S.P. Yu, K. Yu, V. Tresp et al., Supervised probabilistic principal component analysis, in: Proceedings of the Intinternational Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug 2006, pp. 464-473.
    • (2006) , pp. 464-473
    • Yu, S.P.1    Yu, K.2    Tresp, V.3
  • 26
    • 77952545258 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml.
  • 27
    • 34250702177 scopus 로고    scopus 로고
    • Local distance preservation in the GP-LVM through back constraints
    • Proceeding of the International Conference on Machine Learning, Pittsburgh, USA, Jun
    • N.D. Lawrence, J. Quinonero-Candela, Local distance preservation in the GP-LVM through back constraints, in: Proceeding of the International Conference on Machine Learning, Pittsburgh, USA, Jun 2006, pp. 513-520.
    • (2006) , pp. 513-520
    • Lawrence, N.D.1    Quinonero-Candela, J.2
  • 28
    • 38349093039 scopus 로고    scopus 로고
    • Constraint Score: a new filter method for feature selection with pairwise constraints
    • Zhang D., Chen S., Zhou Z. Constraint Score: a new filter method for feature selection with pairwise constraints. Pattern Recognition 2008, 41:1440-1451.
    • (2008) Pattern Recognition , vol.41 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.3
  • 29
    • 56449130871 scopus 로고    scopus 로고
    • Pairwise constraint propagation by semidefinite programming for semi-supervised classification
    • Proceedings of the International Conference on Machine Learning, Helsinki, Finland, Jun
    • Z. Li, J. Liu, X. Tang, Pairwise constraint propagation by semidefinite programming for semi-supervised classification, in: Proceedings of the International Conference on Machine Learning, Helsinki, Finland, Jun 2008, pp. 576-583.
    • (2008) , pp. 576-583
    • Li, Z.1    Liu, J.2    Tang, X.3
  • 30
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • Proceeding of the International Conference on Knowledge Discovery and Data Mining, Seattle, USA, Aug.
    • S. Basu, M. Bilenko, R.J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceeding of the International Conference on Knowledge Discovery and Data Mining, Seattle, USA, Aug. 2004 pp. 59-68.
    • (2004) , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.