메뉴 건너뛰기




Volumn , Issue , 2010, Pages 275-283

Topic models for semantics-preserving video compression

Author keywords

Content based video retrieval; Topic models

Indexed keywords

COMPACT REPRESENTATION; COMPRESSION RATIOS; CONTENT-BASED; CONTENT-BASED VIDEO RETRIEVAL; DESCRIPTORS; DIMENSIONALITY REDUCTION TECHNIQUES; HIGH-DIMENSIONAL; IMAGE REGIONS; LOW LEVEL DESCRIPTORS; MOTION INFORMATION; MULTI-MODAL; MULTIPLE MODALITIES; PREDICTION ACCURACY; SEMANTIC INFORMATION; STATE-OF-THE-ART SYSTEM; STILL IMAGES; STORAGE REQUIREMENTS; TEMPORAL STRUCTURES; TOPIC MODEL; VIDEO COMPRESSION; VIDEO CONTENTS; VIDEO UNDERSTANDING; YOUTUBE;

EID: 77952406197     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1743384.1743433     Document Type: Conference Paper
Times cited : (7)

References (39)
  • 4
    • 77249179451 scopus 로고    scopus 로고
    • Keyframe extraction for video tagging & summarization
    • D. Borth, A. Ulges, C. Schulze, and T. Breuel. Keyframe Extraction for Video Tagging & Summarization. In GI-Informatiktage, pages 45-48, 2008.
    • (2008) GI-Informatiktage , pp. 45-48
    • Borth, D.1    Ulges, A.2    Schulze, C.3    Breuel, T.4
  • 9
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition by Unsupervised Scale-invariant Learning. In CVPR, pages 264-271, 2003.
    • (2003) CVPR , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 64549119744 scopus 로고    scopus 로고
    • The holy grail of multimedia information retrieval: So close or yet so far away?
    • A. Hanjalic, R. Lienhart, W. Ma, and J. Smith. The Holy Grail of Multimedia Information Retrieval: So Close or Yet So Far Away? Proc. IEEE, 96(4):541-547, 2008.
    • (2008) Proc IEEE , vol.96 , Issue.4 , pp. 541-547
    • Hanjalic, A.1    Lienhart, R.2    Ma, W.3    Smith, J.4
  • 12
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, 42:177-196, 2001.
    • (2001) Machine Learning , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 14
    • 34948886129 scopus 로고    scopus 로고
    • Fusing local image descriptors for large-scale image retrieval
    • E. Horster and R. Lienhart. Fusing Local Image Descriptors for Large-Scale Image Retrieval. CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Horster, E.1    Lienhart, R.2
  • 15
    • 70350656086 scopus 로고    scopus 로고
    • Deep networks for image retrieval on large-scale databases
    • E. Horster and R. Lienhart. Deep Networks for Image Retrieval on Large-scale Databases. In ACM MM, pages 643-646, 2008.
    • (2008) ACM MM , pp. 643-646
    • Horster, E.1    Lienhart, R.2
  • 16
    • 36849095498 scopus 로고    scopus 로고
    • Image retrieval on large-scale image databases
    • E. Horster, R. Lienhart, and M. Slaney. Image Retrieval on Large-scale Image Databases. In CIVR, pages 17-24, 2007.
    • (2007) CIVR , pp. 17-24
    • Horster, E.1    Lienhart, R.2    Slaney, M.3
  • 17
    • 57549085754 scopus 로고    scopus 로고
    • Continuous visual vocabulary models for PLSA-based scene recognition
    • E. Horster, R. Lienhart, and M. Slaney. Continuous Visual Vocabulary Models for PLSA-based Scene Recognition. In CIVR, pages 319-328, 2008.
    • (2008) CIVR , pp. 319-328
    • Horster, E.1    Lienhart, R.2    Slaney, M.3
  • 19
    • 0035167037 scopus 로고    scopus 로고
    • The MPEG-7 Color layout descriptor: A compact image feature description for high-speed image/video segment retrieval
    • E. Kasutani and A. Yamada. The MPEG-7 Color Layout Descriptor: A Compact Image Feature Description for High-speed Image/Video Segment Retrieval. Image Processing, 2001, 1:674-677, 2001.
    • (2001) Image Processing 2001 , vol.1 , pp. 674-677
    • Kasutani, E.1    Yamada, A.2
  • 20
    • 84905168209 scopus 로고    scopus 로고
    • TRECVID-2008 content-based copy detection task: Overview
    • available from
    • W. Kraaij. TRECVID-2008 Content-based Copy Detection Task: Overview. In TRECVID Workshop (available from: http: // www-nlpir. nist. gov/ projects/ tvpubs/ tv. pubs. org. html ), 2008.
    • (2008) TRECVID Workshop
    • Kraaij, W.1
  • 21
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • F.-F. Li and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In CVPR, pages 524-531, 2005.
    • (2005) CVPR , pp. 524-531
    • Li, F.-F.1    Perona, P.2
  • 22
    • 50649084971 scopus 로고    scopus 로고
    • Unsupervised image categorization and object localization using topic models and correspondences between Images
    • D. Liu and T. Chen. Unsupervised Image Categorization and Object Localization using Topic Models and Correspondences between Images. ICCV, pages 1-7, 2007.
    • (2007) ICCV , pp. 1-7
    • Liu, D.1    Chen, T.2
  • 23
    • 36849070411 scopus 로고    scopus 로고
    • Information-theoretic semantic multimedia indexing
    • J. Magalhaes and S. Rüger. Information-theoretic Semantic Multimedia Indexing. In CIVR, pages 619-626, 2007.
    • (2007) CIVR , pp. 619-626
    • Magalhaes, J.1    Rüger, S.2
  • 24
    • 13444280001 scopus 로고    scopus 로고
    • PLSA-based image auto-annotation: Constraining the latent space
    • F. Monay and D. Gatica-Perez. PLSA-based Image Auto-annotation: Constraining the Latent Space. In ACM MM, pages 348-351, 2004.
    • (2004) ACM MM , pp. 348-351
    • Monay, F.1    Gatica-Perez, D.2
  • 25
    • 84898026340 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. C. Niebles, H. Wang, and L. Fei-fei. Unsupervised Learning of Human Action Categories using Spatial-temporal Words. In BMVC, 2006.
    • (2006) BMVC
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 27
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In Proc. IEEE, pages 257-286, 1989.
    • (1989) Proc. IEEE , pp. 257-286
    • Rabiner, L.R.1
  • 35
    • 57549112595 scopus 로고    scopus 로고
    • Language modeling for bag-of-visual words image categorization
    • P. Tirilly, V. Claveau, and P. Gros. Language Modeling for Bag-of-visual Words Image Categorization. In CIVR, pages 249-258, 2008.
    • (2008) CIVR , pp. 249-258
    • Tirilly, P.1    Claveau, V.2    Gros, P.3
  • 36
    • 57549108165 scopus 로고    scopus 로고
    • A comparison of color features for visual concept classification
    • K. E. van de Sande, T. Gevers, and C. G. Snoek. A Comparison of Color Features for Visual Concept Classification. In CIVR, pages 141-150, 2008.
    • (2008) CIVR , pp. 141-150
    • Sande De Van, K.E.1    Gevers, T.2    Snoek, C.G.3
  • 37
    • 13444263342 scopus 로고    scopus 로고
    • Optimal multimodal fusion for multimedia data analysis
    • New York, NY, USA
    • Y. Wu, E. Chang, K. Chang, and J. Smith. Optimal Multimodal Fusion for Multimedia Data Analysis. In ACM Multimedia, pages 573-579, New York, NY, USA, 2004.
    • (2004) ACM Multimedia , pp. 573-579
    • Wu, Y.1    Chang, E.2    Chang, K.3    Smith, J.4
  • 38
    • 36849010129 scopus 로고    scopus 로고
    • Online video recommendation based on multimodal fusion and relevance feedback
    • B. Yang, T. Mei, X. Hua, L. Yang, S. Yang, and M. Li. Online Video Recommendation Based on Multimodal Fusion and Relevance Feedback. In CIVR, pages 73-80, 2007.
    • (2007) CIVR , pp. 73-80
    • Yang, B.1    Mei, T.2    Hua, X.3    Yang, L.4    Yang, S.5    Li, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.