메뉴 건너뛰기




Volumn 39, Issue 10, 2010, Pages 1832-1846

Adjusting stepwise p-Values in generalized linear models

Author keywords

Adjusted p value; Nonparametric permutation approach; Stepwise model selection

Indexed keywords

DATA-DRIVEN; GENERALIZED LINEAR MODEL; MODEL SELECTION; NON-PARAMETRIC; NON-PARAMETRIC PERMUTATION; P-VALUES; SCIENTIFIC COMMUNITY; SELECTION METHODS; SIMULATION STUDIES; STEPWISE METHODS; VARIABLE SELECTION;

EID: 77952334898     PISSN: 03610926     EISSN: 1532415X     Source Type: Journal    
DOI: 10.1080/03610920902912968     Document Type: Article
Times cited : (15)

References (29)
  • 1
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Abramovich, F., Benjamini, Y., Donoho, D. L., Johnstone I. M. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34:584-653.
    • (2006) Ann. Statist. , Issue.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov, B. N., Csáki, F., eds. Budapest: Akadémia Kiado
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Petrov, B. N., Csáki, F., eds. 2nd International Symposium on Information Theory. Budapest: Akadémia Kiado, pp. 267-281.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 9644265270 scopus 로고    scopus 로고
    • Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
    • Austin, P. C., Tu, J. V. (2004). Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. J. Clin. Epidem. 57:1138-1146.
    • (2004) J. Clin. Epidem. , vol.57 , pp. 1138-1146
    • Austin, P.C.1    Tu, J.V.2
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A new and powerful approach to multiple testing
    • Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A new and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57:1289-1300.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 1289-1300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 33746852417 scopus 로고    scopus 로고
    • Consistent variable selection in high dimensional regression via multiple testing
    • Bunea, F., Wegkamp, M. H., Auguste, A. (2006). Consistent variable selection in high dimensional regression via multiple testing. J. Statis. Plann. Infer. 136:4349-4364.
    • (2006) J. Statis. Plann. Infer. , vol.136 , pp. 4349-4364
    • Bunea, F.1    Wegkamp, M.H.2    Auguste, A.3
  • 8
    • 0009020169 scopus 로고
    • Estimating the residual variance in orthogonal regression with variable selection
    • Copas, J. B., Long, T. (1991). Estimating the residual variance in orthogonal regression with variable selection. Statistician 40:51-59.
    • (1991) Statistician , vol.40 , pp. 51-59
    • Copas, J.B.1    Long, T.2
  • 10
    • 77952381162 scopus 로고    scopus 로고
    • A new nonparametric approach for multiplicity control: Optimal subset procedures
    • Finos, L., Salmaso, L. (2005). A new nonparametric approach for multiplicity control: optimal subset procedures. Computat. Statist. 20:643-654.
    • (2005) Computat. Statist. , vol.20 , pp. 643-654
    • Finos, L.1    Salmaso, L.2
  • 11
    • 33745066080 scopus 로고    scopus 로고
    • Weighted methods controlling the multiplicity when the number of variables is much higher than the number of observations
    • Finos, L., Salmaso, L. (2006). Weighted methods controlling the multiplicity when the number of variables is much higher than the number of observations. J. Nonparametric Statist. 18:245-261.
    • (2006) J. Nonparametric Statist. , vol.18 , pp. 245-261
    • Finos, L.1    Salmaso, L.2
  • 12
    • 34547875368 scopus 로고    scopus 로고
    • FDR- and FWE-controlling methods using data-driven weights
    • Finos, L., Salmaso, L. (2007). FDR- and FWE-controlling methods using data-driven weights. J. Statist. Plann. Infer. 137:3859-3870.
    • (2007) J. Statist. Plann. Infer. , vol.137 , pp. 3859-3870
    • Finos, L.1    Salmaso, L.2
  • 13
    • 0038230301 scopus 로고
    • The problem of underestimating the residual error variance in forward stepwise regression
    • Freedman, L. S., Pee, D., Midthune, D. N. (1992). The problem of underestimating the residual error variance in forward stepwise regression. Statistician 41:405-412.
    • (1992) Statistician , vol.41 , pp. 405-412
    • Freedman, L.S.1    Pee, D.2    Midthune, D.N.3
  • 14
    • 0343892908 scopus 로고
    • Conditional p-values for the F-statistic in a forward selection procedure
    • Grechanovsky, E., Pinsker, I. (1995). Conditional p-values for the F-statistic in a forward selection procedure. Computat. Statist. Data Anal. 20:239-263.
    • (1995) Computat. Statist. Data Anal. , vol.20 , pp. 239-263
    • Grechanovsky, E.1    Pinsker, I.2
  • 15
    • 77952401227 scopus 로고    scopus 로고
    • A randomization method of obtaining valid p-values for model changes selected "post hoc"
    • Poster presented at the Montreal, Canada, June
    • Harshman, R. A., Lundy, M. E. (2006). A randomization method of obtaining valid p-values for model changes selected "post hoc". Poster presented at the Seventy-first Annual Meeting of the Psychometric Society, Montreal, Canada, June; http://publish.uwo.ca/ ?harshman/imps2006.pdf.
    • (2006) Seventy-first Annual Meeting of the Psychometric Society
    • Harshman, R.A.1    Lundy, M.E.2
  • 16
    • 43149089426 scopus 로고
    • Chapter 6 of Statistical Models in S. J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole
    • Hastie, T. J., Pregibon, D. (1992). Generalized Linear Models. Chapter 6 of Statistical Models in S. J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
    • (1992) Generalized Linear Models
    • Hastie, T.J.1    Pregibon, D.2
  • 18
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics 32:1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 19
    • 0017146303 scopus 로고
    • On closed testing procedures with special reference to ordered analysis of variance
    • Marcus, R., Peritz, E., Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63:655-660.
    • (1976) Biometrika , vol.63 , pp. 655-660
    • Marcus, R.1    Peritz, E.2    Gabriel, K.R.3
  • 21
    • 0000187970 scopus 로고
    • Selection of subsets of regression variables
    • Miller, A. J. (1984). Selection of subsets of regression variables. J. Roy. Statist. Soc., Ser. A 147:389-425.
    • (1984) J. Roy. Statist. Soc., Ser. A , vol.147 , pp. 389-425
    • Miller, A.J.1
  • 26
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions (with Discussion)
    • Stone, M. (1974) Cross-validation choice and assessment of statistical predictions (with Discussion). J. Roy. Statist. Soc. B 36:111-147.
    • (1974) J. Roy. Statist. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 28
    • 18944384763 scopus 로고    scopus 로고
    • On distribution of AIC in linear regression models
    • Yanagihara, H., Ohmoto, C. (2005). On distribution of AIC in linear regression models. J. Statist. Plann. Infer. 133:417-433.
    • (2005) J. Statist. Plann. Infer. , vol.133 , pp. 417-433
    • Yanagihara, H.1    Ohmoto, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.